KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.10
/
pp.2643-2657
/
2023
Scene graphs are structured representations that can clearly convey objects and the relationships between them, but are often heavily biased due to the highly skewed, long-tailed relational labeling in the dataset. Indeed, the visual world itself and its descriptions are biased. Therefore, Unbiased Scene Graph Generation (USGG) prefers to train models to eliminate long-tail effects as much as possible, rather than altering the dataset directly. To this end, we propose Geometric and Semantic Improvement (GSI) for USGG to mitigate this issue. First, to fully exploit the feature information in the images, geometric dimension and semantic dimension enhancement modules are designed. The geometric module is designed from the perspective that the position information between neighboring object pairs will affect each other, which can improve the recall rate of the overall relationship in the dataset. The semantic module further processes the embedded word vector, which can enhance the acquisition of semantic information. Then, to improve the recall rate of the tail data, the Class Balanced Seesaw Loss (CBSLoss) is designed for the tail data. The recall rate of the prediction is improved by penalizing the body or tail relations that are judged incorrectly in the dataset. The experimental findings demonstrate that the GSI method performs better than mainstream models in terms of the mean Recall@K (mR@K) metric in three tasks. The long-tailed imbalance in the Visual Genome 150 (VG150) dataset is addressed better using the GSI method than by most of the existing methods.
There are two aspects of digital trade: the digitalisation of goods/services being traded and the digitalisation of the transactional act. Digital data (i.e. machine-readable industrial data and transactional data) is the major driving force for both aspects of digital trade. Digital data is a non-rivalrous input, whether for production or marketing activities, and is thus able to be used by many firms or government agencies without limiting the use of others. Digital platforms provide online infrastructure for the interactions between groups, for instance, consumers and producers. The externality effect refers to the situation in which prosperity in one group on a given platform will improve the returns of other groups on the same platform. In the era of the data-driven economy, strategic trade policy can involve data-related policies. The major objective of these policies is to improve the competitiveness of domestic firms. For instance, firms may be subsidised if they use cloud services provided by specific platforms. This strand of strategic trade policies might be useful for increasing the competitiveness of small-and medium-sized enterprises (SMEs) via the digitalisation of production/marketing processes. Alternatively, strategic trade policy may also exploit the externality effect via platform economy-related policies. Further, some countries may form data coalitions to facilitate cross-border data flow. This paper uses cases in Asian countries to illustrate which role these strategic trade policies can play in the digital economy.
Malware files containing concealed malicious scripts have recently been identified within MS Office documents frequently. In response, this paper describes the design and implementation of a system that automatically detects malicious digital files using machine learning techniques. The system is proficient in identifying malicious scripts within MS Office files that exploit the OLE VBA macro functionality, detecting malicious scripts embedded within the CDH/LFH/ECDR internal field values through OOXML structure analysis, and recognizing abnormal CDH/LFH information introduced within the OOXML structure, which is not conventionally referenced. Furthermore, this paper presents a mechanism for utilizing the VirusTotal malicious script detection feature to autonomously determine instances of malicious tampering within MS Office files. This leads to the design and implementation of a machine learning-based integrated software. Experimental results confirm the software's capacity to autonomously assess MS Office file's integrity and provide enhanced detection performance for arbitrary MS Office files when employing the optimal machine learning model.
This paper proposes a method for detecting malicious domains considering human habitual characteristics by building a Deep Learning model based on LSTM (Long Short-Term Memory). DGA (Domain Generation Algorithm) malicious domains exploit human habitual errors, resulting in severe security threats. The objective is to swiftly and accurately respond to changes in malicious domains and their evasion techniques through typosquatting to minimize security threats. The LSTM-based Deep Learning model automatically analyzes and categorizes generated domains as malicious or benign based on malware-specific features. As a result of evaluating the model's performance based on ROC curve and AUC accuracy, it demonstrated 99.21% superior detection accuracy. Not only can this model detect malicious domains in real-time, but it also holds potential applications across various cyber security domains. This paper proposes and explores a novel approach aimed at safeguarding users and fostering a secure cyber environment against cyber attacks.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.4
/
pp.1042-1058
/
2024
Terahertz (THz) communication is becoming a key technology for future 6G wireless networks because of its ultra-wide band. However, the implementation of THz communication systems confronts formidable challenges, notably beam splitting effects and high computational complexity associated with them. Our primary objective is to design a hybrid precoder that minimizes the Euclidean distance from the fully digital precoder. The analog precoding part adopts the delay-phase alternating minimization (DP-AltMin) algorithm, which divides the analog precoder into phase shifters and time delayers. This effectively addresses the beam splitting effects within THz communication by incorporating time delays. The traditional digital precoding solution, however, needs matrix inversion in THz massive multiple-input multiple-output (MIMO) communication systems, resulting in significant computational complexity and complicating the design of the analog precoder. To address this issue, we exploit the characteristics of THz massive MIMO communication systems and construct the digital precoder as a product of scale factors and semi-unitary matrices. We utilize Schatten norm and Hölder's inequality to create semi-unitary matrices after initializing the scale factors depending on the power allocation. Finally, the analog precoder and digital precoder are alternately optimized to obtain the ultimate hybrid precoding scheme. Extensive numerical simulations have demonstrated that our proposed algorithm outperforms existing methods in mitigating the beam splitting issue, improving system performance, and exhibiting lower complexity. Furthermore, our approach exhibits a more favorable alignment with practical application requirements, underlying its practicality and efficiency.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.18
no.8
/
pp.2214-2229
/
2024
Wireless sensor network (WSN) consists of large number of sensor nodes that are deployed in geographical locations to collect sensed information, process data and communicate it to the control station for further processing. Due the unfriendly environment where the sensors are deployed, there exist many possibilities of malicious nodes which performs malicious activities in the network. Therefore, the security threats affect performance and life time of sensor networks, whereas various security aspects are there to address security issues in WSN namely Cryptography, Trust Management, Intrusion Detection System (IDS) and Intrusion Prevention Systems (IPS). However, IDS detect the malicious activities and produce an alarm. These malicious activities exploit vulnerabilities in the network layer and affect all layers in the network. Existing feature selection methods such as filter-based methods are not considering the redundancy of the selected features and wrapper method has high risk of overfitting the classification of intrusion. Due to overfitting, the classification algorithm fails to detect the intrusion in better manner. The main objective of this paper is to provide the efficient feature selection algorithm which was suitable for any type classification algorithm to detect the intrusion in an effective manner. This paper, the security of the network is addressed by proposing Feature Selection Algorithm using Chi Squared with Ensemble Method (FSChE). The proposed scheme employs the combination of decision tree along with the random forest classification algorithm to form ensemble classifier. The experimental results justify the feasibility of the proposed scheme in terms of attack detection, packet delivery ratio and time analysis by employing NSL KDD cup data Set. The obtained results shows that the proposed ensemble method increases the overall performance by 10% to 25% with respect to mentioned parameters.
As the Internet becomes ubiquitous, a large volume of information is posted on the Internet with exponential growth every day. Accordingly, it is not unusual that investors in stock markets gather and compile firm-specific or market-wide information through online searches. Importantly, it becomes easier for investors to acquire value-relevant information for their investment decision with the help of powerful search tools on the Internet. Our study examines whether or not the Internet helps investors assess a firm's value better by using firm-level data over long periods spanning from January 2004 to December 2013. To this end, we construct weekly-based search volume for information technology (IT) services firms on the Internet. We limit our focus to IT firms since they are often equipped with intangible assets and relatively less recognized to the public which makes them hard-to measure. To obtain the information on those firms, investors are more likely to consult the Internet and use the information to appreciate the firms more accurately and eventually improve their investment decisions. Prior studies have shown that changes in search volumes can reflect the various aspects of the complex human behaviors and forecast near-term values of economic indicators, including automobile sales, unemployment claims, and etc. Moreover, search volume of firm names or stock ticker symbols has been used as a direct proxy of individual investors' attention in financial markets since, different from indirect measures such as turnover and extreme returns, they can reveal and quantify the interest of investors in an objective way. Following this line of research, this study aims to gauge whether the information retrieved from the Internet is value relevant in assessing a firm. We also use search volume for analysis but, distinguished from prior studies, explore its impact on return comovements with market returns. Given that a firm's returns tend to comove with market returns excessively when investors are less informed about the firm, we empirically test the value of information by examining the association between Internet searches and the extent to which a firm's returns comove. Our results show that Internet searches are negatively associated with return comovements as expected. When sample is split by the size of firms, the impact of Internet searches on return comovements is shown to be greater for large firms than small ones. Interestingly, we find a greater impact of Internet searches on return comovements for years from 2009 to 2013 than earlier years possibly due to more aggressive and informative exploit of Internet searches in obtaining financial information. We also complement our analyses by examining the association between return volatility and Internet search volumes. If Internet searches capture investors' attention associated with a change in firm-specific fundamentals such as new product releases, stock splits and so on, a firm's return volatility is likely to increase while search results can provide value-relevant information to investors. Our results suggest that in general, an increase in the volume of Internet searches is not positively associated with return volatility. However, we find a positive association between Internet searches and return volatility when the sample is limited to larger firms. A stronger result from larger firms implies that investors still pay less attention to the information obtained from Internet searches for small firms while the information is value relevant in assessing stock values. However, we do find any systematic differences in the magnitude of Internet searches impact on return volatility by time periods. Taken together, our results shed new light on the value of information searched from the Internet in assessing stock values. Given the informational role of the Internet in stock markets, we believe the results would guide investors to exploit Internet search tools to be better informed, as a result improving their investment decisions.
Zhao, Bi-Cheng;Rosli, Ahmad Nurzid;Jang, Chol-Hee;Lee, Kee-Sung;Jo, Geun-Sik
Journal of Intelligence and Information Systems
/
v.18
no.1
/
pp.1-21
/
2012
In recent years, mobile phone has experienced an extremely fast evolution. It is equipped with high-quality color displays, high resolution cameras, and real-time accelerated 3D graphics. In addition, some other features are includes GPS sensor and Digital Compass, etc. This evolution advent significantly helps the application developers to use the power of smart-phones, to create a rich environment that offers a wide range of services and exciting possibilities. To date mobile AR in outdoor research there are many popular location-based AR services, such Layar and Wikitude. These systems have big limitation the AR contents hardly overlaid on the real target. Another research is context-based AR services using image recognition and tracking. The AR contents are precisely overlaid on the real target. But the real-time performance is restricted by the retrieval time and hardly implement in large scale area. In our work, we exploit to combine advantages of location-based AR with context-based AR. The system can easily find out surrounding landmarks first and then do the recognition and tracking with them. The proposed system mainly consists of two major parts-landmark browsing module and annotation module. In landmark browsing module, user can view an augmented virtual information (information media), such as text, picture and video on their smart-phone viewfinder, when they pointing out their smart-phone to a certain building or landmark. For this, landmark recognition technique is applied in this work. SURF point-based features are used in the matching process due to their robustness. To ensure the image retrieval and matching processes is fast enough for real time tracking, we exploit the contextual device (GPS and digital compass) information. This is necessary to select the nearest and pointed orientation landmarks from the database. The queried image is only matched with this selected data. Therefore, the speed for matching will be significantly increased. Secondly is the annotation module. Instead of viewing only the augmented information media, user can create virtual annotation based on linked data. Having to know a full knowledge about the landmark, are not necessary required. They can simply look for the appropriate topic by searching it with a keyword in linked data. With this, it helps the system to find out target URI in order to generate correct AR contents. On the other hand, in order to recognize target landmarks, images of selected building or landmark are captured from different angle and distance. This procedure looks like a similar processing of building a connection between the real building and the virtual information existed in the Linked Open Data. In our experiments, search range in the database is reduced by clustering images into groups according to their coordinates. A Grid-base clustering method and user location information are used to restrict the retrieval range. Comparing the existed research using cluster and GPS information the retrieval time is around 70~80ms. Experiment results show our approach the retrieval time reduces to around 18~20ms in average. Therefore the totally processing time is reduced from 490~540ms to 438~480ms. The performance improvement will be more obvious when the database growing. It demonstrates the proposed system is efficient and robust in many cases.
Today the lectures are usually practiced in a teacher-led traditional classroom system or a student-led e-learning system. Students passively follow the teacher's lectures in both systems, though. Also due to the advances in 3D Computer Graphics and Game technologies, there are trials to exploit the positive effect of games in learning. The serious games, specifically designed games for an educational goal, or existing games for a special class have been used as lectures. Still these games have a great difficulty in being integrated into the educational system technically and economically. Therefore a new 3D MMORPG based lecturing system is presented in this paper. In our new lecturing system, the characteristics of a 3D MMORPG, achievement, sociality, and immersion, are provided to motivate students to participate actively in a lecture. A teacher and students interact with each other in realtime as 3D characters in a 3D virtual classroom on-line. An ordinary teacher can also easily apply our new system to existing classes since a teacher only needs to specify a slide file to prepare a lecture. For the future work, a user study and the effect of our new lecturing system will be performed.
Park, Mi-Jeong;Park, Jong-Han;Hong, Seung-Beom;Shin, Hyeon-Dong
한국균학회소식:학술대회논문집
/
2015.05a
/
pp.55-55
/
2015
Rust is one of the most destructive diseases on economically important plants such as agricultural and horticultural crops, as well as forest trees [1]. Chemical treatment is the most effective means to control rust, but use of the chemical fungicides involves inevitable risks to human health and environment [2]. Unfortunately, biocontrol is currently impracticable for rust disease management [3]. It is necessary to exploit biocontrol agents to help prevent rust diseases. As a fundamental research for future development of biocontrol agents for rusts, biodiversity of hyperparasites occurring on rust fungi was investigated. During 2006-2010, 197 fungal isolates of the rust hyperparasites were collected and isolated from various combinations of mycohosts and plant hosts in many regions of Korea. Based on morphological and molecular data, they were identified as 8 genera and 12 species. Besides, phylogenetic relationships between the hyperparasites and related taxa were inferred. A total of 114 isolates of Pseudovirgaria were obtained from rust pustules of Phragmidium spp. and Pucciniastrum agrimoniae infecting rosaceous plants. Phylogenetic analysis using multigene sequences revealed a high level of genetic variability among many isolates of Pseudovirgaria and close correlation between the isolates and mycohosts. Only two species of Pseudovirgaria, P. hyperparasitica and P. grisea are often difficult to distinguish by their morphological similarity, but on the molecular basis they were clearly differentiated from each other. There had been no previous record of P. grisea outside Europe, but the present study has proved its presence in Korea. Among six distinct groups (five of P. hyperparasitica and one of P. grisea) within the Pseudovirgaria isolates, each lineage of P. hyperparasitica was closely associated with specific mycohosts and thus might have cospeciated with their mycohosts, which probably led to coevolution. Although P. grisea possesses a host preference for Phragmidium species occurring on Rubus, it was not specific for a mycohost. P. grisea seems to evolve in the direction of having a broad mycohost range. Seventeen isolates of Verticillium-like fungi were isolated from rust sori. Based on morphological data and DNA sequence analysis, the isolates were identified as three Lecanicillium species, viz. L. attenuatum, Lecanicillium sp. 1, Lecanicillium sp. 2, and V. epiphytum. The unidenified two species of Lecanicillium appear to be previously unknown taxa. Sixty-six isolates of miscellaneous hyphomycetes belonging to 6 species of 5 genera were obtained from pustules of rust fungi. On the basis of morphological and molecular analyses, the miscellaneous hyphomycetes growing on rusts were identified as Acrodontium crateriforme, Cladophialophora pucciniophila, Cladosporium cladosporioides, Phacellium vossianum, Ramularia coleosporii, and R. uredinicola.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.