• 제목/요약/키워드: Explicit method

Search Result 1,022, Processing Time 0.026 seconds

Finite element analysis of eccentric loading in high-velocity impact forging (고속 타격단조시 발생되는 편심부하의 유한요소해석)

  • Yoo, Yo-Han;Yang, Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1589-1597
    • /
    • 1997
  • The high-velocity impact forging process with eccentric loading condition is analyzed using the explicit time integration finite element method. In order to consider the strain hardening, strain rate hardening and thermal softening effects, which are frequently observed in high-velocity deformation phenomena, the Johnson-Cook constitutive model is applied to model the workpiece. It is assumed that the material response of the dies is elastic in the study. As a result of the eccentric loading simulation, it is found that the increase of the eccentric ratio and the allowable tilting angle cause the decrease of the maximum forging load and the blow efficiency, and it is also found that the forging load and the blow efficiency generated in the high-velocity impact forging process with three-dimensional geometry can be obtained efficiently.

A Parametric Study on Double-Slit-Type Rupture Disc of Pulse Separation Device (펄스분리장치의 이중 슬릿형 파열판 매개변수 연구)

  • Han, Houk-Seop;Cho, Won-Man;Lee, Won-Bok;Koo, Song-Hoe;Lee, Bang-Eop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.101-110
    • /
    • 2010
  • Dual pulse rocket motor is a solid motor with two grains separated by a bulkhead and rupture disc. The elasto-plastic explicit dynamic analysis for the rupture disc was conducted by finite element method. The effect of the slit geometry of a rupture disc was parametrically analyzed in terms of rupture time and shape. The results can be used to control the rupture pressure by changing the slit geometry of rupture disc.

The exact solutions for the natural frequencies and mode shapes of non-uniform beams carrying multiple various concentrated elements

  • Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.153-176
    • /
    • 2003
  • From the equation of motion of a "bare" non-uniform beam (without any concentrated elements), an eigenfunction in term of four unknown integration constants can be obtained. When the last eigenfunction is substituted into the three compatible equations, one force-equilibrium equation, one governing equation for each attaching point of the concentrated element, and the boundary equations for the two ends of the beam, a matrix equation of the form [B]{C} = {0} is obtained. The solution of |B| = 0 (where ${\mid}{\cdot}{\mid}$ denotes a determinant) will give the "exact" natural frequencies of the "constrained" beam (carrying any number of point masses or/and concentrated springs) and the substitution of each corresponding values of {C} into the associated eigenfunction for each attaching point will determine the corresponding mode shapes. Since the order of [B] is 4n + 4, where n is the total number of point masses and concentrated springs, the "explicit" mathematical expression for the existing approach becomes lengthily intractable if n > 2. The "numerical assembly method"(NAM) introduced in this paper aims at improving the last drawback of the existing approach. The "exact"solutions in this paper refer to the numerical results obtained from the "continuum" models for the classical analytical approaches rather than from the "discretized" ones for the conventional finite element methods.

Static and dynamic analysis of circular beams using explicit stiffness matrix

  • Rezaiee-Pajand, Mohammad;Rajabzadeh-Safaei, Niloofar
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.111-130
    • /
    • 2016
  • Two new elements with six degrees of freedom are proposed by applying the equilibrium conditions and strain-displacement equations. The first element is formulated for the infinite ratio of beam radius to thickness. In the second one, theory of the thick beam is used. Advantage of these elements is that by utilizing only one element, the exact solution will be obtained. Due to incorporating equilibrium conditions in the presented formulations, both proposed elements gave the precise internal forces. By solving some numerical tests, the high performance of the recommended formulations and also, interaction effects of the bending and axial forces will be demonstrated. While the second element has less error than the first one in thick regimes, the first element can be used for all regimes due to simplicity and good convergence. Based on static responses, it can be deduced that the first element is efficient for all the range of structural characteristics. The free vibration analysis will be performed using the first element. The results of static and dynamic tests show no deficiency, such as, shear and membrane locking and excessive stiff structural behavior.

Damage and fatigue quantification of RC structures

  • Sadeghi, Kabir;Nouban, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1021-1044
    • /
    • 2016
  • Different versions of a damage index (DI) along with a formulation to find the number of cycles at failure due to fatigue, applicable to reinforced concrete (RC) structures are presented. These are based on an energetic analysis method and applicable to both global and local levels. The required data can be found either from the numerical simulation of structures or from the experimental tests. A computer program has been developed to simulate numerically the nonlinear behavior of RC columns under cyclic loading. The proposed DI gives a regular distribution of structural damages up to failure and is validated by the results of the tests carried out on RC columns subjected to cyclic loading. In general, the local and global damage indices give approximately similar results, while each of them has its own advantages. The advantage of the implicit version of DI is that, it allows the comparison of the results with those of the monotonic loading case, while the explicit version makes it possible to estimate the number of loading cycles at failure due to fatigue, and the advantage of the simplified version is that; the monotonic loading data is not needed for the cyclic loading case.

Minimum life-cycle cost design of ice-resistant offshore platforms

  • Li, Gang;Zhang, Da-Yong;Yue, Qian-Jin
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.11-24
    • /
    • 2009
  • In China, the oil and natural gas resources of Bohai Bay are mainly marginal oil fields. It is necessary to build both ice-resistant and economical offshore platforms. However, risk is involved in the design, construction, utilization, maintenance of offshore platforms as uncertain events may occur within the life-cycle of a platform under the extreme ice load. In this study, the optimum design model of the expected life-cycle cost for ice-resistant platforms based on cost-effectiveness criterion is proposed. Multiple performance demands of the structure, facilities and crew members, associated with the failure assessment criteria and evaluation functions of costs of construction, consequences of structural failure modes including damage, revenue loss, death and injury as well as discounting cost over time are considered. An efficient approximate method of the global reliability analysis for the offshore platforms is provided, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. The proposed life-cycle optimum design formula are applied to a typical ice-resistant platform in Bohai Bay, and the results demonstrate that the life-cycle cost-effective optimum design model is more rational compared to the conventional design.

Dynamic analysis of the agglomerated SiO2 nanoparticles-reinforced by concrete blocks with close angled discontinues subjected to blast load

  • Amnieh, Hassan Bakhshandeh;Zamzam, Mohammad Saber
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.121-128
    • /
    • 2018
  • Three structure-dependent integration methods with no numerical dissipation have been successfully developed for time integration. Although these three integration methods generally have the same numerical properties, such as unconditional stability, second-order accuracy, explicit formulation, no overshoot and no numerical damping, there still exist some different numerical properties. It is found that TLM can only have unconditional stability for linear elastic and stiffness softening systems for zero viscous damping while for nonzero viscous damping it only has unconditional stability for linear elastic systems. Whereas, both CEM and CRM can have unconditional stability for linear elastic and stiffness softening systems for both zero and nonzero viscous damping. However, the most significantly different property among the three integration methods is a weak instability. In fact, both CRM and TLM have a weak instability, which will lead to an adverse overshoot or even a numerical instability in the high frequency responses to nonzero initial conditions. Whereas, CEM possesses no such an adverse weak instability. As a result, the performance of CEM is much better than for CRM and TLM. Notice that a weak instability property of CRM and TLM might severely limit its practical applications.

IDENTIFICATION OF HUMAN-INDUCED INITIATING EVENTS IN THE LOW POWER AND SHUTDOWN OPERATION USING THE COMMISSION ERROR SEARCH AND ASSESSMENT METHOD

  • KIM, YONGCHAN;KIM, JONGHYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.187-195
    • /
    • 2015
  • Human-induced initiating events, also called Category B actions in human reliability analysis, are operator actions that may lead directly to initiating events. Most conventional probabilistic safety analyses typically assume that the frequency of initiating events also includes the probability of human-induced initiating events. However, some regulatory documents require Category B actions to be specifically analyzed and quantified in probabilistic safety analysis. An explicit modeling of Category B actions could also potentially lead to important insights into human performance in terms of safety. However, there is no standard procedure to identify Category B actions. This paper describes a systematic procedure to identify Category B actions for low power and shutdown conditions. The procedure includes several steps to determine operator actions that may lead to initiating events in the low power and shutdown stages. These steps are the selection of initiating events, the selection of systems or components, the screening of unlikely operating actions, and the quantification of initiating events. The procedure also provides the detailed instruction for each step, such as operator's action, information required, screening rules, and the outputs. Finally, the applicability of the suggested approach is also investigated by application to a plant example.

Estimation of the Exponential Distributions based on Multiply Progressive Type II Censored Sample

  • Lee, Kyeong-Jun;Park, Chan-Keun;Cho, Young-Seuk
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.5
    • /
    • pp.697-704
    • /
    • 2012
  • The maximum likelihood(ML) estimation of the scale parameters of an exponential distribution based on progressive Type II censored samples is given. The sample is multiply censored (some middle observations being censored); however, the ML method does not admit explicit solutions. In this paper, we propose multiply progressive Type II censoring. This paper presents the statistical inference on the scale parameter for the exponential distribution when samples are multiply progressive Type II censoring. The scale parameter is estimated by approximate ML methods that use two different Taylor series expansion types ($AMLE_I$, $AMLE_{II}$). We also obtain the maximum likelihood estimator(MLE) of the scale parameter under the proposed multiply progressive Type II censored samples. We compare the estimators in the sense of the mean square error(MSE). The simulation procedure is repeated 10,000 times for the sample size n = 20 and 40 and various censored schemes. The $AMLE_{II}$ is better than MLE and $AMLE_I$ in the sense of the MSE.

Implementation of a Robust Speech Recognizer in Noisy Car Environment Using a DSP (DSP를 이용한 자동차 소음에 강인한 음성인식기 구현)

  • Chung, Ik-Joo
    • Speech Sciences
    • /
    • v.15 no.2
    • /
    • pp.67-77
    • /
    • 2008
  • In this paper, we implemented a robust speech recognizer using the TMS320VC33 DSP. For this implementation, we had built speech and noise database suitable for the recognizer using spectral subtraction method for noise removal. The recognizer has an explicit structure in aspect that a speech signal is enhanced through spectral subtraction before endpoints detection and feature extraction. This helps make the operation of the recognizer clear and build HMM models which give minimum model-mismatch. Since the recognizer was developed for the purpose of controlling car facilities and voice dialing, it has two recognition engines, speaker independent one for controlling car facilities and speaker dependent one for voice dialing. We adopted a conventional DTW algorithm for the latter and a continuous HMM for the former. Though various off-line recognition test, we made a selection of optimal conditions of several recognition parameters for a resource-limited embedded recognizer, which led to HMM models of the three mixtures per state. The car noise added speech database is enhanced using spectral subtraction before HMM parameter estimation for reducing model-mismatch caused by nonlinear distortion from spectral subtraction. The hardware module developed includes a microcontroller for host interface which processes the protocol between the DSP and a host.

  • PDF