• Title/Summary/Keyword: Explicit method

Search Result 1,022, Processing Time 0.029 seconds

COMMON SOLUTION TO GENERALIZED MIXED EQUILIBRIUM PROBLEM AND FIXED POINT PROBLEM FOR A NONEXPANSIVE SEMIGROUP IN HILBERT SPACE

  • DJAFARI-ROUHANI, BEHZAD;FARID, MOHAMMAD;KAZMI, KALEEM RAZA
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.89-114
    • /
    • 2016
  • In this paper, we introduce and study an explicit hybrid relaxed extragradient iterative method to approximate a common solution to generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup in Hilbert space. Further, we prove that the sequence generated by the proposed iterative scheme converges strongly to the common solution to generalized mixed equilibrium problem and fixed point problem for a nonexpansive semigroup. This common solution is the unique solution of a variational inequality problem and is the optimality condition for a minimization problem. The results presented in this paper are the supplement, improvement and generalization of the previously known results in this area.

A Study on the Superession of Puckering and Wrinking in Drawing of KFP Engine Part (KFP 엔진 드로잉 부품 주름 발생억제에 관한 연구)

  • Chung, W.J.;Kim, K.T.;Oh, S.G.;Ahn, H.;Lee, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.186-195
    • /
    • 1995
  • In this study, drawing process of KFP engine airsealing bearing support part is analyzed by dynamic explicit finite element method. Puckering should be supressed to meet the specification. By investigating the influence fo process parameter, the feasible process condition can be obtained. The corresponding experiment is carried out. There is good agreement between the experiment and FE simulation . From this result, it is shown that the dynamic explicit finite element method can be used effectively to avoid puckering and wrinking problem in drawing process.

  • PDF

Impact Analysis of Spiral type Electrodes in Vacuum Circuit Breaker (진공회로차단기용 횡자계방식 접점의 충격해석)

  • Park, W.J.;Ahn, K.Y.;Oh, I.S.;Huh, H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.895-900
    • /
    • 2001
  • It is very important for impact analysis to reflect the dynamic characteristics of materials as well as the static characteristics. As the dynamic behavior of a material is different from the static(or quasi-static) one due to the inertia effect and the stress wave propagation, an adequate experimental technique has to be developed to obtain the dynamic responses for the corresponding level of the strain rate. To determine the dynamic characteristics of materials, the Hopkinson bar (compression type) experiment is carried out. For using dynamic material properties, Johnson-Cook model is applied in impact analysis with explicit finite element method

  • PDF

MATHEMATICAL SIMULATION MODEL OF FLOW INDUCED CIRCULATION IN A HARBOR (흐름에 의한 만내의 순환의 수학적 모의모형)

  • 윤태훈;윤성범
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1982.07a
    • /
    • pp.91-98
    • /
    • 1982
  • The formulation of depth-averaged two-dimensional mathematical model for the analysis of tide induced circulation in a harbor by the Galerkin finite element techique is presented. In integration of the Galerkin approach in time both explicit and implicit method have been tested for one and two dimentional water bodies, and the two step Lax-Wendroff explicit method is found to be effective than the implicit in reducing computing time. The essential characteristics of the tide induced flow in Busan Harbor with two open boundaries has been foccud to be reproduceable in the numerical model and the simulated results encourage that the model can be used as a predictive tool.

  • PDF

Springback Analyses in Sheet Metal Stamping Processes (박판 성형에서의 스프링백 해석과 산업적 응용)

  • 양동열;이상욱;윤정환;유동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06a
    • /
    • pp.1-8
    • /
    • 1998
  • The explicit and implicit time integration methods are applied effectively to analyze sheet metal stamping processes, which include the forming stage and the springback stage consecutively. The explicit time integration method has better merits in the forming stage including highly complicated three-dimensional contact conditions. By contrary, the implicit time integration method is better for analyzing springback since the complicated contact conditions are removd and the computing time to get the final static state is short. In this work, brief descriptions of the formulation and the factor study for springback simulations are presented. Further, the simulated results for the S-rail and the roof pannel stamping processes are shown and discussed.

AN EXPLICIT NUMERICAL ALGORITHM FOR SURFACE RECONSTRUCTION FROM UNORGANIZED POINTS USING GAUSSIAN FILTER

  • KIM, HYUNDONG;LEE, CHAEYOUNG;LEE, JAEHYUN;KIM, JAEYEON;YU, TAEYOUNG;CHUNG, GENE;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • We present an explicit numerical algorithm for surface reconstruction from unorganized points using the Gaussian filter. We construct a surface from unorganized points and solve the modified heat equation coupled with a fidelity term which keeps the given points. We apply the operator splitting method. First, instead of solving the diffusion term, we use the Gaussian filter which has the effect of diffusion. Next, we solve the fidelity term by using the fully implicit scheme. To investigate the proposed algorithm, we perform computational experiments and observe good results.

Semi closed-form pricing autocallable ELS using Brownian Bridge

  • Lee, Minha;Hong, Jimin
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.251-265
    • /
    • 2021
  • This paper discusses the pricing of autocallable structured product with knock-in (KI) feature using the exit probability with the Brownian Bridge technique. The explicit pricing formula of autocallable ELS derived in the existing paper handles the part including the minimum of the Brownian motion using the inclusion-exclusion principle. This has the disadvantage that the pricing formula is complicate because of the probability with minimum value and the computational volume increases dramatically as the number of autocall chances increases. To solve this problem, we applied an efficient and robust simulation method called the Brownian Bridge technique, which provides the probability of touching the predetermined barrier when the initial and terminal values of the process following the Brownian motion in a certain interval are specified. We rewrite the existing pricing formula and provide a brief theoretical background and computational algorithm for the technique. We also provide several numerical examples computed in three different ways: explicit pricing formula, the Crude Monte Carlo simulation method and the Brownian Bridge technique.

A Study on Application of Finite Element Method to the Impact test for the Safety of the Splash Guard of a CNC Machine Tool (CNC 공작기계 스프레쉬 가드의 안전성을 위한 충격 시험에 대한 유한요소법 적용에 관한 연구)

  • Kim, Tae Won;Choi, Jin Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.782-788
    • /
    • 2013
  • This study addresses the issue of safety of the splash guard of a computer numerical control (CNC) machine tool at the design stage. As an impact test for evaluating safety requirements such as strength under the safety regulation is an expensive and iterative task, it is necessary to develop a new method to minimize the task of the impact test for development of the machine tool. In this study, explicit finite element method was adopted for replacement of the impact test of the splash guard of a machine tool at the design stage. A finite element model was developed for implementing the impact test on an actual vertical CNC lathe and then produced the analysis including plastic strain and deformation to enable the safety of its splash guard to be determined. The analysis results demonstrated that the finite element method can be applied to safety evaluation for design of the splash guard of a CNC machine tool.

Reliability-based stochastic finite element using the explicit probability density function

  • Rezan Chobdarian;Azad Yazdani;Hooshang Dabbagh;Mohammad-Rashid Salimi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.349-359
    • /
    • 2023
  • This paper presents a technique for determining the optimal number of elements in stochastic finite element analysis based on reliability analysis. Using the change-of-variable perturbation stochastic finite element approach, the probability density function of the dynamic responses of stochastic structures is explicitly determined. This method combines the perturbation stochastic finite element method with the change-of-variable technique into a united model. To further examine the relationships between the random fields, discretization of the random field parameters, such as the variance function and the scale of fluctuation, is also performed. Accordingly, the reliability index is calculated based on the explicit probability density function of responses with Gaussian or non-Gaussian random fields in any number of elements corresponding to the random field discretization. The numerical examples illustrate the effectiveness of the proposed method for a one-dimensional cantilever reinforced concrete column and a two-dimensional steel plate shear wall. The benefit of this method is that the probability density function of responses can be obtained explicitly without the use simulation techniques. Any type of random variable with any statistical distribution can be incorporated into the calculations, regardless of the restrictions imposed by the type of statistical distribution of random variables. Consequently, this method can be utilized as a suitable guideline for the efficient implementation of stochastic finite element analysis of structures, regardless of the statistical distribution of random variables.