• Title/Summary/Keyword: Explicit method

Search Result 1,022, Processing Time 0.031 seconds

The Development of Static-explicit Rigid-plastic Finite Element Method and Application to 2-dimension Sectional Analysis (2차원 단면해석을 위한 정적-외연적 강소성 유한요소법의 개발 및 적용)

  • Jung, Dong-Won;Lee, Seung-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.91-97
    • /
    • 2003
  • In rigid-plastic finite element method, there is a heavy computation time and convergence problem. In this study, revised rigid-plastic finite element method Will be introduced. This method is the way that restrict the convergence interval. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis method were no longer a critical problem. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

Study on the Numerical Analysis of Nuclear Reactor Kinetics Equations (원자로 동특성 방정식의 수치해석에 관한 연구)

  • Jae Choon Yang
    • Nuclear Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.98-109
    • /
    • 1983
  • A two-step alternating direction explicit method is developed to solve the space-dependent reactor kinetics equations in two space dimensions. As a special case in the general class of alternating direction implicit methods, this method is analysed for accuracy and stability. To test the validity of this method it is compared with the implicit-difference method used in the TWIGL program. It is shown that the two methods are closely related. The time dependent neutron fluxes of the pressurized water reactor (PWR), during control rod insertion, and, of the CANDU-PHW reactor, in case of postulated loss of coolant accident, are obtained from the numerical calculation results.

  • PDF

Explicit Analysis of Flows in Box Culvert (사각형 암거흐름의 양해적 해석)

  • Yoo, Dong-Hoon;Uhm, Ho-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.481-494
    • /
    • 2003
  • Flow through the culvert is very complex depending on the characteristics of hydraulic conditions. A design method using a monograph is normally employed due to the wide range of flow characteristics and the difficulty of calculating inlet water depth. The present study suggests the method for determining the inlet water depth of box culvert using Bernoulli's equation. By employing the explicit equation of inlet water depth, a standard design method of box culvert is developed for a wide range of flow characteristics. Explicit solution techniques are proposed to determine the width and height, slope and discharge of box culvert.

Postbuckling Analysis of Thin Plates under Impact Loading (충격하중을 받는 박판의 후좌굴 해석)

  • Kim, Hyeong-Yeol;Park, Sun-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.139-149
    • /
    • 2002
  • An explicit direct time integration method based solution algorithm is proposed to predict dynamic postbuckling response of thin plates. Based on the von Karman's plate equations and Marquerre's shallow shell theory, a rectangular plate finite element is formulated and utilized in this study. The element formulation takes into account geometrical nonlinearity and initial deflection of plates. The solution algorithm employs the central difference method. Using the computer program developed by the authors, dynamic postbuckling behavior of elastic thin plates under impact loading is investigated by considering the time variation of load and load duration. The efficiency of the proposed solution algorithm is examined through illustrative numerical examples.

A Numerical Study on Shock Wave Turbulent Boundary Layer Interactions in High-Speed Flows (고속 흐름에서의 충격파와 난류경계층의 상호작용에 관한 수치적 연구)

  • Mun, Su-Yeon;Son, Chang-Hyeon;Lee, Chung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.3
    • /
    • pp.322-329
    • /
    • 2001
  • A study of the shock wave turbulent boundary layer interaction is presented. The focus of the study is the interactions of the shock waves with the turbulent boundary layer on the falt plate. Three examples are investigated. The computations are performed, using mixed explicit-implicit generalized Galerkin finite element method. The linear equations at each time step are solved by a preconditioned GMRES algorithm. Numerical results indicate that the implicit scheme converges to the asymptotic steady state much faster than the explicit counterpart. The computed surface pressures and skin friction coefficients display good agreement with experimental data. The flowfield manifests a complex shock wave system and a pair of counter-rotating vortices.

An Analysis of Cone Penetration Based on Arbitrary Larangian-Eulerian Method (Arbitrary Lagrangian-Eulerian 기법에 의거한 콘 관입 해석)

  • Oh, Se-Boong
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.85-98
    • /
    • 2001
  • Cone penetration was analyzed by arbitrary Lagangian-Eulerian(ALE) method. In order to simulate full penetration, steady state analyses were performed using ABAQUS/Explicit, which models upward flow of soil layers. In the analysis of homogeneous layer it was found that the paths and the strain of soil particles were consistent with the result of the strain path method and that the ultimate resistance were reasonably evaluated. The cone penetration through different soil layers was also analyzed and that showed the transfer of cone resistance. The steady state ALE analysis could perform full penetration through the layered soils.

  • PDF

Parameter Calibration of Laser Scan Camera for Measuring the Impact Point of Arrow (화살 탄착점 측정을 위한 레이저 스캔 카메라 파라미터 보정)

  • Baek, Gyeong-Dong;Cheon, Seong-Pyo;Lee, In-Seong;Kim, Sung-Shin
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.76-84
    • /
    • 2012
  • This paper presents the measurement system of arrow's point of impact using laser scan camera and describes the image calibration method. The calibration process of distorted image is primarily divided into explicit and implicit method. Explicit method focuses on direct optical property using physical camera and its parameter adjustment functionality, while implicit method relies on a calibration plate which assumed relations between image pixels and target positions. To find the relations of image and target position in implicit method, we proposed the performance criteria based polynomial theorem model that overcome some limitations of conventional image calibration model such as over-fitting problem. The proposed method can be verified with 2D position of arrow that were taken by SICK Ranger-D50 laser scan camera.

A novel approach to the form-finding of membrane structures using dynamic relaxation method

  • Labbafi, S. Fatemeh;Sarafrazi, S. Reza;Gholami, Hossein;Kang, Thomas H.K.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.123-141
    • /
    • 2017
  • Solving a system of linear or non-linear equations is required to analyze any kind of structures. There are many ways to solve a system of equations, and they can be classified as implicit and explicit techniques. The explicit methods eliminate round-off errors and use less memory. The dynamic relaxation method (DR) is one of the powerful and simple explicit processes. The important point is that the DR does not require to store the global stiffness matrix, for which it just uses the residual loads vector. In this paper, a new approach to the DR method is expressed. In this approach, the damping, mass and time steps are similar to those of the traditional method of dynamic relaxation. The difference of this proposed method is focused on the method of calculating the damping. The proposed method is expressed such that the time step is constant, damping is equal to zero except in steps with maximum energy and the concentrated damping can be applied to minimize the energy of system in this step. In this condition, the calculation of damping in all steps is not required. Then the volume of computation is reduced. The DR method for form-finding of membrane structures is employed in this paper. The form-finding of the three plans related to the membrane structures with different loading is considered to investigate the efficiency of the proposed method. The numerical results show that the convergence rate based on the proposed method increases in all cases than other methods.

CONVERGENCE OF THE GENERALIZED IMPLICIT EULER METHOD

  • Yu, Dong-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.1
    • /
    • pp.31-40
    • /
    • 1992
  • We introduce the generalized Runge-Kutta methods with the exponentially dominant order .omega. in [3], and the convergence theorems of the generalized explicit Euler method are derived in [4]. In this paper we will study the convergence of the generalized implicit Euler method.

  • PDF

Analysis of Debonding between Mixed Finite Elements for Saturated Porous Media (혼합유한요소를 통한 다공질매체의 요소분리해석)

  • Tak, Moonho;Lee, Janggeun;Ban, Hoki;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • In this paper, we propose a new method to debond between mixed finite elements for porous media in ABAQUS (2014). ABAQUS just provides debonding algorithm for the u-p model using cohesive elements in standard version. However, this approach has a drawback that it is hard to simulate complex debonding problems like element separation, rigid body motion, and contact between separated elements in standard version. ABAQUS-explicit can resolve these complex problems, but cohesive elements for the u-p model cannot be applied. We introduce a new algorithm for debonding for porous media instead of using cohesive elements. In this method, subroutines VUMAT to apply constitutive models and VDISP to separate elements in ABAQUS are used to simulate debonding problems. In addition, a simple 2-D example is demonstrated in the ABAQUS-explicit solver.