• Title/Summary/Keyword: Explicit and Implicit Feedback

Search Result 16, Processing Time 0.02 seconds

Developing a Graph Convolutional Network-based Recommender System Using Explicit and Implicit Feedback (명시적 및 암시적 피드백을 활용한 그래프 컨볼루션 네트워크 기반 추천 시스템 개발)

  • Xinzhe Li;Dongeon Kim;Qinglong Li;Jaekyeong Kim
    • Journal of Information Technology Services
    • /
    • v.22 no.1
    • /
    • pp.43-56
    • /
    • 2023
  • With the development of the e-commerce market, various types of products continue to be released. However, customers face an information overload problem in purchasing decision-making. Therefore, personalized recommendations have become an essential service in providing personalized products to customers. Recently, many studies on GCN-based recommender systems have been actively conducted. Such a methodology can address the limitation in disabling to effectively reflect the interaction between customer and product in the embedding process. However, previous studies mainly use implicit feedback data to conduct experiments. Although implicit feedback data improves the data scarcity problem, it cannot represent customers' preferences for specific products. Therefore, this study proposed a novel model combining explicit and implicit feedback to address such a limitation. This study treats the average ratings of customers and products as the features of customers and products and converts them into a high-dimensional feature vector. Then, this study combines ID embedding vectors and feature vectors in the embedding layer to learn the customer-product interaction effectively. To evaluate recommendation performance, this study used the MovieLens dataset to conduct various experiments. Experimental results showed the proposed model outperforms the state-of-the-art. Therefore, the proposed model in this study can provide an enhanced recommendation service for customers to address the information overload problem.

The Effects of Explicit Focus on Form on L2 Learning

  • Park, Hye-Sook
    • English Language & Literature Teaching
    • /
    • v.8 no.1
    • /
    • pp.39-53
    • /
    • 2002
  • Recently much research has investigated the role of attention in L2 learning, comparing the effects of explicit learning with those of implicit learning. With this background the research aims at examining the effects explicit focus on form has on L2 learning based on the acquisition of the English article system. The participants were 70 Korean college students who enrolled in English Composition classes. The experimental group received explicit focus on form including grammatical explanation, input enhancement, output practice, and negative evidence (corrective feedback) for two weeks, while the control group was exposed to sufficient input and negative evidence. Completion tasks were administered at the beginning and the end of the semester. In addition, errors in the use of English articles were analysed on their compositions both before and after the different treatments. The analyses of the results show that the explicit focus on form group improved significantly more than the control group, particularly for the definite article 'the', and some changes occurred in the distribution of article errors. These findings suggest that explicit teaching plays a more contributory role than implicit teaching in acquiring L2 knowledge in classroom-based L2 learning.

  • PDF

Pet Shop Recommendation System based on Implicit Feedback (암묵적 피드백 기반 반려동물 용품 추천 시스템)

  • Choi, Heeyoul;Kang, Yunhee;Kang, Myungju
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1561-1566
    • /
    • 2017
  • Due to the advances in machine learning and artificial intelligence technologies, many new services have become available. Among such services, recommendation systems have already been successfully applied to commercial services and made profits as in online shopping malls. Most recommendation algorithms in commercial services are based on content analysis or explicit feedback rates as in movie recommendations. However, many online shopping malls have difficulties in content analysis or are lacking explicit feedbacks on their items, which results in no recommendation system for their items. Even for such service systems, user log data is easily available, and if recommendations are possible with such log data, the quality of their service can be improved. In this paper, we extract implicit feedback like click information for items from log data and provide a recommendation system based on the implicit feedback. The proposed system is applied to a real in-service online shopping mall.

State-of-the-Art Knowledge Distillation for Recommender Systems in Explicit Feedback Settings: Methods and Evaluation (익스플리싯 피드백 환경에서 추천 시스템을 위한 최신 지식증류기법들에 대한 성능 및 정확도 평가)

  • Hong-Kyun Bae;Jiyeon Kim;Sang-Wook Kim
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.89-94
    • /
    • 2023
  • Recommender systems provide users with the most favorable items by analyzing explicit or implicit feedback of users on items. Recently, as the size of deep-learning-based models employed in recommender systems has increased, many studies have focused on reducing inference time while maintaining high recommendation accuracy. As one of them, a study on recommender systems with a knowledge distillation (KD) technique is actively conducted. By KD, a small-sized model (i.e., student) is trained through knowledge extracted from a large-sized model (i.e., teacher), and then the trained student is used as a recommendation model. Existing studies on KD for recommender systems have been mainly performed only for implicit feedback settings. Thus, in this paper, we try to investigate the performance and accuracy when applied to explicit feedback settings. To this end, we leveraged a total of five state-of-the-art KD methods and three real-world datasets for recommender systems.

Implementation Of User Preference Estimation Algorithm Using Implicit Feedback (Implicit Feedback을 통한 선호도 예측 알고리즘 구현)

  • Jang, Jeong-Rok;Kim, Yon-Gu;Kim, Do-Yeon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.641-642
    • /
    • 2008
  • In this paper, we propose a new approach for the implicit rating algorithm of finding user's intense and preference to the contents on the web. Although the explicit method dig out the user preference of specific contents based on the user's intervention, we propose the implicit method obtaining the user preference according to the user's behavioral patterns on the web implicitly and automatically without the user's intervention. The implementation results show that the proposed approach is highly valuable for supporting recommender systems in conjunction with the users lifestyle.

  • PDF

Implicit Motor Sequence Learning During Serial Reaction Time Tasks Induced by Visual Feedback in Patients With Stroke (편측 뇌손상 환자에서 시각적 정보에 의한 운동 순서의 내잠 학습에 대한 분석)

  • Lee, Mi-Young;Park, Rae-Joon;Kwon, Yong-Hyun;Park, Ji-Won;Jang, Sung-Ho
    • Physical Therapy Korea
    • /
    • v.13 no.3
    • /
    • pp.24-32
    • /
    • 2006
  • Theoretical framework of motor learning is used to enhance perceptual motor skill in physical therapy intervention, which can be subdivided into two main types-explicit and implicit. The purpose of this study was to examine whether stroke patients with unilateral brain damage learn implicitly a motor skill using the arm ipsilateral to the damaged hemisphere. Speculation then followed as to the formation of therapeutic plans and instructions provided to patients with stroke. 20 patients with stroke and 20 normal participants were recruited. All the subjects practiced serial reaction time tasks for 30 minutes a day and retention tests on the following day. The tasks and tests involved pressing the corresponding buttons to 4 colored circles presented on a computer screen as quickly and accurately as possible. Patients with stroke responded more slowly than controls. However, both groups showed decreased reaction time in the experimental and retention periods. Also, there was no significant difference between both groups regarding explicit knowledge of consecutive order. Therefore, patients with stoke had the ability to learn implicitly a perceptual motor skill. Prescriptive instruction using implicit and explicit feedback may be beneficial for motor skill learning in physical therapy intervention for patients with brain damage.

  • PDF

Restructure Recommendation Framework for Online Learning Content using Student Feedback Analysis (온라인 학습을 위한 학생 피드백 분석 기반 콘텐츠 재구성 추천 프레임워크)

  • Choi, Ja-Ryoung;Kim, Suin;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.11
    • /
    • pp.1353-1361
    • /
    • 2018
  • With the availability of real-time educational data collection and analysis techniques, the education paradigm is shifting from educator-centric to data-driven lectures. However, most offline and online education frameworks collect students' feedback from question-answering data that can summarize their understanding but requires instructor's attention when students need additional help during lectures. This paper proposes a content restructure recommendation framework based on collected student feedback. We list the types of student feedback and implement a web-based framework that collects both implicit and explicit feedback for content restructuring. With a case study of four-week lectures with 50 students, we analyze the pattern of student feedback and quantitatively validate the effect of the proposed content restructuring measured by the level of student engagement.

MFMAP: Learning to Maximize MAP with Matrix Factorization for Implicit Feedback in Recommender System

  • Zhao, Jianli;Fu, Zhengbin;Sun, Qiuxia;Fang, Sheng;Wu, Wenmin;Zhang, Yang;Wang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2381-2399
    • /
    • 2019
  • Traditional recommendation algorithms on Collaborative Filtering (CF) mainly focus on the rating prediction with explicit ratings, and cannot be applied to the top-N recommendation with implicit feedbacks. To tackle this problem, we propose a new collaborative filtering approach namely Maximize MAP with Matrix Factorization (MFMAP). In addition, in order to solve the problem of non-smoothing loss function in learning to rank (LTR) algorithm based on pairwise, we also propose a smooth MAP measure which can be easily implemented by standard optimization approaches. We perform experiments on three different datasets, and the experimental results show that the performance of MFMAP is significantly better than other recommendation approaches.

Observable Behavior for Implicit User Modeling -A Framework and User Studies-

  • Kim, Jin-Mook;Oard, Douglas W.
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.35 no.3
    • /
    • pp.173-189
    • /
    • 2001
  • This paper presents a framework for observable behavior that can be used as a basis for user modeling, and it reports the results of a pair of user studies that examine the joint utility of two specific behaviors. User models can be constructed by hand, or they can be teamed automatically based on feedback provided by the user about the relevance of documents that they have examined. By observing user behavior, it is possible to obtain implicit feedback without requiring explicit relevance judgments. Four broad categories of potentially observable behavior are identified : examine, retain, reference, and annotate, and examples of specific behaviors within a category are further subdivided based on the natural scope of information objects being manipulated . segment object, or class. Previous studies using Internet discussion groups (USENET news) have shown reading time to be a useful source of implicit feedback for predicting a user's preferences. The experiments reported in this paper extend that work to academic and professional journal articles and abstracts, and explore the relationship between printing behavior and reading time. Two user studies were conducted in which undergraduate students examined articles or abstracts from the telecommunications or pharmaceutical literature. The results showed that reading time can be used to predict the user's assessment of relevance, that the mean reading time for journal articles and technical abstracts is longer than has been reported for USENET news documents, and that printing events provide additional useful evidence about relevance beyond that which can be inferred from reading time. The paper concludes with a brief discussion of the implications of the reported results.

  • PDF

Personalized TV Program Recommendation in VOD Service Platform Using Collaborative Filtering (VOD 서비스 플랫폼에서 협력 필터링을 이용한 TV 프로그램 개인화 추천)

  • Han, Sunghee;Oh, Yeonhee;Kim, Hee Jung
    • Journal of Broadcast Engineering
    • /
    • v.18 no.1
    • /
    • pp.88-97
    • /
    • 2013
  • Collaborative filtering(CF) for the personalized recommendation is a successful and popular method in recommender systems. But the mainly researched and implemented cases focus on dealing with independent items with explicit feedback by users. For the domain of TV program recommendation in VOD service platform, we need to consider the unique characteristic and constraints of the domain. In this paper, we studied on the way to convert the viewing history of each TV program episodes to the TV program preference by considering the series structure of TV program. The former is implicit for personalized preference, but the latter tells quite explicitly about the persistent preference. Collaborative filtering is done by the unit of series while data gathering and final recommendation is done by the unit of episodes. As a result, we modified CF to make it more suitable for the domain of TV program VOD recommendation. Our experimental study shows that it is more precise in performance, yet more compact in calculation compared to the plain CF approaches. It can be combined with other existing CF techniques as an algorithm module.