• Title/Summary/Keyword: Explicit Method

Search Result 1,019, Processing Time 0.024 seconds

TEMPERATURE-EXPLICIT FORMULATION OF ENERGY EQUATION FOR A HEAT TRANSFER ANALYSIS (열유동 해석을 위한 에너지 방정식의 온도에 현시적인 이산화 기법)

  • Kim, Jong-Tae;Kim, Sang-Baik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.277-282
    • /
    • 2009
  • A temperature equation which is derived from an enthalpy transport equation by using an assumption of a constant specific heat is very attractive for analyses of heat and fluid flows. It can be used for an analysis of a solid-fluid conjugate heat transfer, and it does not need a numerical method to find temperature from a temperature-enthalpy relation. But its application is limited because of the assumption. A new method is derived in this study, which is a temperature-explicit formulation of the energy equation. The enthalpy form of the energy equation is used in the method. But the final discrete form of the equation is expressed with temperature. It can be used for a solid-fluid conjugate heat transfer and multiphase flows. It is found by numerical tests that it is very efficient and as accurate as the standard enthalpy formulation.

  • PDF

Sensitivity Analysis of the Explicit Elasto-plastic Finite Element Method and Application to the Quasi-static Deformation (외연적 탄소성 유한요소해석에서의 민감도 해석과 준정적 변형에의 응용)

  • Kim, Se-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.402-407
    • /
    • 2001
  • Sensitivity analysis scheme is developed in the elasto-plastic finite element method with explicit time integration using direct differentiation method. The direct differentiation is concerned with the time integration, constitutive relation, shell element with reduced integration and the contact scheme. Sensitivity analysis results are mainly examined with the highly nonlinear and quasi-static problem with the complicated contact condition. The result shows stable sensitivity especially in the sheet metal forming analysis.

  • PDF

Comparison of multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations (비정상 Navier-Stokes 방정식의 수치해석을 위한 다단계 외재법의 성능 비교)

  • Seo,Yong-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.2
    • /
    • pp.202-212
    • /
    • 1997
  • In this study, performance of the multi-stage explicit methods for numerical computation of the unsteady Navier-Stokes equations is investigated. Three methods under consideration are 1 st-, 2 nd-, and 4 th-order Runge-Kutta (R-K) methods. Compared in this estimation is stability, accuracy, and CPU time of each method. The computational codes developed are applied to the two-dimensional flow in a square cavity driven by an oscillating lid. It turned out that at Reynolds number 400, the 1 st-order R-K method is the best, while at 3200 the 2 nd-order R-K is recommended. At higher Reynolds numbers, it is conjectured that the 4 th-order R-K method will be the best algorithm among three due to its highest stability.

Explicit Motion of Dynamic Systems with Position Constraints

  • Eun, Hee-Chang;Yang, Keun-Hyuk;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.538-544
    • /
    • 2003
  • Although many methodologies exist for determining the constrained equations of motion, most of these methods depend on numerical approaches such as the Lagrange multiplier's method expressed in differential/algebraic systems. In 1992, Udwadia and Kalaba proposed explicit equations of motion for constrained systems based on Gauss's principle and elementary linear algebra without any multipliers or complicated intermediate processes. The generalized inverse method was the first work to present explicit equations of motion for constrained systems. However, numerical integration results of the equation of motion gradually veer away from the constraint equations with time. Thus, an objective of this study is to provide a numerical integration scheme, which modifies the generalized inverse method to reduce the errors. The modified equations of motion for constrained systems include the position constraints of index 3 systems and their first derivatives with respect to time in addition to their second derivatives with respect to time. The effectiveness of the proposed method is illustrated by numerical examples.

Efficient and automated method of collapse assessment

  • Qi, Yongsheng;Gu, Qiang;Li, Dong
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.561-570
    • /
    • 2012
  • Seismic collapse analysis requires efficient and automated method to perform thousands of time history analyses. The paper introduced the advantages of speed and convergence property of explicit method, provided a few techniques to accelerate speed of calculation and developed an automated procedure for collapse assessment, which combines the strong capacity of commercial explicit finite element software and the flexible, intelligent specialties of control program written in FORTRAN language aiming at collapse analysis, so that tedious and heavy work of collapse analysis based on FEMAP695 can be easily implemented and resource of calculation can be made the best use of. All the key commands of control program are provided to help analyzers and engineers to cope with collapse assessment conveniently.

A Dynamic-explicit Finite Element Analysis for Hydro-forming Process (Hydro-forming 공정을 위한 동적-외연적 유한요소해석)

  • Jung, D.W.;Hwang, J.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.3
    • /
    • pp.23-29
    • /
    • 2004
  • In this paper, a finite element formulation using dynamic-explicit time integration scheme is used for numerical analysis of Hydro-forming processes. The lumping scheme is employed for the diagonal mass matrix and dynamic explicit formulation. Hydro-forming process for auto-body panel forming is analyzed by using dynamic-explicit finite element method. Further, the simulated results of the Hydro-forming processes are shown and discussed. Its application is being increased especially in the automotive industrial area for the cost reduction, weight saving, and improvement of strength.

  • PDF

A Study on the Stability of Explicit FE Analysis in the Sheet Metal Forming Analysis (박판 성형에서의 외연적 유한요소법의 안정성과 내연적 해석법과의 비교)

  • 심현보;전성문;손기찬
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.293-303
    • /
    • 2000
  • Recent developments of Fe technology make it possible to apply CAD/CAE/CAM techniques successfully to the stamping die design among the automotive parts industries. Those successful applications are greatly attributable to the development of commercial S/W. Up to now most commercial S/W for the analysis of sheet metal forming is based on the dynamic explicit algorithm. The main characteristics of dynamic explicit algorithm is that there is no convergence problem if the time increment is taken less than the stability limit. The stability of the analysis is guaranteed in the commercial code, since the adequate time increment is computed from the so called "Courant Condition". However excess computing time is often pointed out in the dynamic explicit analysis according to the characteristics of process parameters taken. In the study, various parameters that may affect the stability and the method how to improve computational efficiency of analysis have been investigated.estigated.

  • PDF

A NUMERICAL METHOD FOR SOLVING ALLEN-CAHN EQUATION

  • Huang, Pengzhan;Abduwali, Abdurishit
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1477-1487
    • /
    • 2011
  • We propose a numerical method for solving Allen-Cahn equation, in both one-dimensional and two-dimensional cases. The new scheme that is explicit, stable, and easy to compute is obtained and the proposed method provides a straightforward and effective way for nonlinear evolution equations.

AN UNSTRUCTURED STEADY COMPRESSIBLE NAVIER-STOKES SOLVER WITH IMPLICIT BOUNDARY CONDITION METHOD (내재적 경계조건 방법을 적용한 비정렬 격자 기반의 정상 압축성 Navier-Stokes 해석자)

  • Baek, C.;Kim, M.;Choi, S.;Lee, S.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • Numerical boundary conditions are as important as the governing equations when analyzing the fluid flows numerically. An explicit boundary condition method updates the solutions at the boundaries with extrapolation from the interior of the computational domain, while the implicit boundary condition method in conjunction with an implicit time integration method solves the solutions of the entire computational domain including the boundaries simultaneously. The implicit boundary condition method, therefore, is more robust than the explicit boundary condition method. In this paper, steady compressible 2-Dimensional Navier-Stokes solver is developed. We present the implicit boundary condition method coupled with LU-SGS(Lower Upper Symmetric Gauss Seidel) method. Also, the explicit boundary condition method is implemented for comparison. The preconditioning Navier-Stokes equations are solved on unstructured meshes. The numerical computations for a number of flows show that the implicit boundary condition method can give accurate solutions.

A Parametric Study on the Springback Considering the Stress Variability in Explicit Finite Element Analysis (외연적 유한요소해석에서의 응력 변동성을 고려한 스프링백 영향 인자 연구)

  • Lee K. D.;Kwon J. W.;Jun B. H.;Kim S. J.;Kim H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.136-140
    • /
    • 2000
  • It is desirable to predict springback quantitatively and accurately for the tool and process design in sheet stamping operations, however, it is blown very difficult. The result of springback analysis by the finite element method is sensitively influenced by numerical factors such as blank element size, number of integration point, punch velocity, contact algorithm etc. In the present work, a parametric study by Taguchi method is performed in order to evaluate the influence of numerical factors on springback Quantitatively and to obtain the combination of numerical factors which yields the best approximation to experimental data. Since springback is determined by the residual stress after forming process, it is important to evaluate stress distribution accurately. The oscillation in the time history curve of stress obtained by explicit FEM says that the stress solution at termination time is in very unstable state. Therefore, a variability study is also carried out in this study in order to assess the stability of implicit springback analysis starting from the stress solution by explicit forming simulation. The 2D draw bending process, one of the NUMISHEET '93 benchmark problems, is adopted as an application model.

  • PDF