• Title/Summary/Keyword: Experiments design

Search Result 6,520, Processing Time 0.037 seconds

Performance assessment of nano-Silica incorporated recycled aggregate concrete

  • Mukharjee, Bibhuti Bhusan;Barai, Sudhirkumar V
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.321-333
    • /
    • 2019
  • The present study targets to access the consequence of utilization of coarse aggregates retrieved from waste concrete as a substitution of coarse fraction of natural aggregates and silica nano-particles as partial substitution of cement using principles of factorial design. Furthermore, procedures of design of experiments are employed to examine the effect of use of recycled aggregates and nano-silica. In this investigation, compressive strength found after at 7, 28, 90 and 365 days, split and flexural tensile strength, ultrasonic pulse velocity and rebound number and are chosen as responses, whereas the percentages of recycled coarse aggregates (RCA%) and nano-silica (NS(%)) are selected as factors. Analysis of Variance has been conducted on the experimental results for the selected responses with consideration the both factors, which indicates that RCA (%) and NS (%) have substantial impact on the various responses. However, the present analysis depicts that interaction between factors has considerable effect on the chosen parameters of concrete. Furthermore, validation experiments are carried to validate these models for compressive and tensile strength for 100% RCA and 1% NS. The results of comparative study indicates that that the error of the estimation determined using the relevant models are found to be small (±5%) in comparison with the analogous experimental results, which authenticates the calculated models.

Experimental Investigations of Systematic Errors in Wind Tunnel Testing Using Design of Experiments (실험설계법 기반 풍동시험 시스템 오차 검출 실험연구)

  • Oh, Se-Yoon;Park, Seung-O;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.335-341
    • /
    • 2013
  • The variation of systematic bias errors in the wind tunnel testing has been studied. A Design of Experiments(DOE) approach to an experimental study of fuselage drag and stability characteristics of a helicopter configuration was applied. When forces and moments measured in one time block differ significantly from measurements made in another time block under assumption that sample observations can be expected to yield same results within permissible measuring errors. The practical implication of this paper is that the systematic error can not be assumed not to exist. The those error reduction could be achieved through the process of randomization, blocking, and replication of the data points.

Rodent Experiments for Pedestrian Flow Simulation at Exit with Various Angles (다양한 각도의 출구에서의 보행자 유동 시뮬레이션을 위한 설치류 실험)

  • Oh, Hyejin;Lyu, Jaehee;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.30-39
    • /
    • 2016
  • There have been many cases of deaths from crushing caused by dense crowds. Numerous studies about pedestrian flow have performed various simulations, but the experimental data to prove the simulations are still not enough. In this paper, the evacuation of pedestrians for proving pedestrian flow simulation is observed. Due to the possibility of real casualties, it is difficult to experiment with humans directly. Therefore, ten C57BL/6NCrSIc mice have been used. It is assumed that C57BL/6NCrSIc mice act like humans in panic situations. Electrical Stimulus Experiments on mice are conducted for exits with various angles. ICY software is applied in this paper. As a result, the mice escape fast at a proper angle of 45 to 60 degrees.

A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model (요인 실험계획법 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구)

  • Lim, Pyo;Park, Sang-Yoon;Yang, Gyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.73-80
    • /
    • 2006
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, because it has many advantages such as good quality, low cost and rapid machining time. But it also has problems such as tool breakage, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is affected by the milling conditions whose selected parameters are spindle speed, feedrate, and width of cut. The experiments were carried out by full factorial design of experiments using an orthogonal array. This paper shows optimal combination and mathematical model for tool life, Therefore, the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.

Experimental Investigations of Accuracy Improvement in Wind Tunnel Testing Using Design of Experiments (실험설계법 기반 풍동실험 정밀도 향상 실험연구)

  • Oh, Se-Yoon;Park, Seung-O;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.291-297
    • /
    • 2014
  • A Design of Experiments(DOE) approach to an experimental study of fuselage drag and stability characteristics of a helicopter configuration was applied to achieve an accuracy improvement in the wind tunnel testing. The impact of blocking the test was assessed by comparing the ANOVA table for the blocked and unblocked cases. For a second-order response model, the role of blocking resulted in a substantial increase in the accuracy of test results. These accuracy improvement could be achieved through randomization, blocking, and replication of the data points i.e. a re-ordering of the test sequence where the data were acquired.

The Arrangement Process Optimization of Vacuum Glazing Pillar using the Design of Experiments (실험계획법을 이용한 진공유리 Pillar의 배치공정 최적화)

  • Kim, Jae Kyung;Jeon, Euy Seik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.73-78
    • /
    • 2012
  • In this study, the optimal process condition was induced about the pillar arrangement process of applying the screen printing method in the manufacture process of vacuum glazing panel. The high precision screen printing is technology which pushes out the paste and spreads it by using the squeegee on the stainless steel plate in which the pattern is formed. The screen printing method is much used in the flat panel display field including the LCD, PDP, FED, organic EL, and etc for forming the high precision micro-pattern. Also a number of studies of screen printing method have been conducted as the method for the cost down through the improvement of productivity. The screen printing method has many parameters. So we used Taguchi method in order to decrease test frequencies and optimize this parameters efficiently. In this study, experiments of pillar arrangement were performed by using Taguchi experimental design. We analyzed experimental results and obtained optimal conditions which are 4 m/s of squeegee speed, $40^{\circ}$ of squeegee angle and distance between metal mask and glass.

Optimal design of escape vent for the dome type coonstrip shrimp (Pandalus hypsinotus) pot (반구형 도화새우통발에 있어서 적정 탈출구의 설계)

  • Kim, Seong-Hun;Lee, Ju-Hee;Kim, Hyung-Seok;Park, Seong-Wook
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.2
    • /
    • pp.115-125
    • /
    • 2010
  • In order to design the optimal escape vent for the coon strip shrimp pot, the tank experiments were conducted with the model pot of five different slit height and slit width, respectively. The optimal height and width of escape vent were determined to 20mm and 40mm by tank experiments, respectively. These were determined by the 50% selection carapace length which was denoted to 25mm in selectivity curve. The escape experiments were conducted to determine a number of escape vent with the original shrimp pot to be set the designed escape vent from 2 vents to 10 vents increasing at intervals of 2 vents in tank. The optimal number of escape vents denoted 8 vents. Therefore, to apply the escape vent in commercial shrimp pot will be efficient to reduce small size shrimps to catch.

An Application of DoE Methodology in WAVE Simulation to Identify the Effectiveness of Variables on Engine Performance and to Optimize Responses (실험계획법과 WAVE 시뮬레이션을 이용한 엔진 작동 변수의 영향도 평가 및 최적화에 대한 연구)

  • Jeong, Dong-Won;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.16-25
    • /
    • 2009
  • Testing engine performance using an engine dynamometer requires high technical researchers and many facilities. Nowadays, different variables of CAE program are used for identifying the engine performance instead of engine dynamometer test. This is more convenience, as it does not necessitate an abundance of engine dynamometer experiments and, in addition, produces better results. However, CAE programs also contain various variables which can affect engine performance. Those are coupled with each other, thus making it difficult to determine the effectiveness of different variables on engines. DoE (Design of Experiments) methodology is an efficient way to verify the magnitude of effectiveness on engine performance as well as making responses to be optimized at once without trial & error. This study used data from WAVE simulations, which modeled the DOHC SI engine with in-line 4 cylinders at 1500, 3000 and 4500rpm. DoE methodology is designed properly to determine the effectiveness of five variables on power, BSFC, and volumetric efficiency, as well as to find the optimal response conditions at each rpm through a minimized number of experiments. After finishing DoE process, all the results are examined concerning the reliability of test through a verification experiment.

Uncertainty quantification based on similarity analysis of reactor physics benchmark experiments for SFR using TRU metallic fuel

  • YuGwon Jo;Jaewoon Yoo;Jong-Hyuk Won;Jae-Yong Lim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3626-3643
    • /
    • 2024
  • One of the issues in the development of the sodium-cooled fast reactor (SFR) using transuranic (TRU) metallic fuel is the absence of criticality benchmark experiment that faithfully mocks up the nuclear characteristics of the target design for validation of the reactor core design code and its uncertainty quantification (UQ). This study aims to quantify the criticality uncertainty of a typical TRU burner with metallic fuel by using the standard upper safety limit (USL) estimation framework based on the similarity analysis of existing benchmark experiments but elaborated in two aspects:1) application of two-sided rather than one-sided tolerance interval and 2) inclusion of additional uncertainty to account for fission products and minor actinides not included in the benchmark experiments. To conduct the similarity analysis and evaluate the nuclear-data induced uncertainty, existing, well-verified computing codes were integrated, including the nuclear data sampling code SANDY, the nuclear data processing code NJOY, and the continuous-energy Monte Carlo code McCARD. Finally, using the SFR benchmark database comprising both publicly available and proprietary benchmark experiments, the criticality uncertainty of the TRU core model with metallic fuel was evaluated.