• Title/Summary/Keyword: Experimental variable

Search Result 2,302, Processing Time 0.027 seconds

Large deflections of variable-arc-length beams under uniform self weight: Analytical and experimental

  • Pulngern, Tawich;Halling, Marvin W.;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2005
  • This paper presents the solution of large static deflection due to uniformly distributed self weight and the critical or maximum applied uniform loading that a simply supported beam with variable-arc-length can resist. Two analytical approaches are presented and validated experimentally. The first approach is a finite-element discretization of the span length based on the variational formulation, which gives the solution of large static sag deflections for the stable equilibrium case. The second approach is the shooting method based on an elastica theory formulation. This method gives the results of the stable and unstable equilibrium configurations, and the critical uniform loading. Experimental studies were conducted to complement the analytical results for the stable equilibrium case. The measured large static configurations are found to be in good agreement with the two analytical approaches, and the critical uniform self weight obtained experimentally also shows good correlation with the shooting method.

Variable Coefficient Inductance Model-Based Four-Quadrant Sensorless Control of SRM

  • Kuai, Song-Yan;Li, Xue-Feng;Li, Xing-Hong;Ma, Jinyang
    • Journal of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.1243-1253
    • /
    • 2014
  • The phase inductance of a switch reluctance motor (SRM) is significantly nonlinear. With different saturation conditions, the phase inductance shape is clearly changed. This study focuses on the relationship between coefficient and current in an inductance model with ignored harmonics above the order of 3. A position estimation method based on the variable coefficient inductance model is proposed in this paper. A four-quadrant sensorless control system of the SRM drive is constructed based on the relationship between variable coefficient inductance and rotor position. The proposed algorithms are implemented in an experimental SRM test setup. Experimental results show that the proposed method estimates position accurately in operating two/four-quadrants. The entire system also has good static and dynamic performance.

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation-Part H : Simulation and Experimental Results-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.10-15
    • /
    • 2003
  • This paper presents the digital computer performance evaluations of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover such as the wind turbine using the nodal admittance approach steady-state frequency domain analysis with the experimental results. The three-phase SEIG setup is implemented for small-scale rural renewable energy utilizations. The experimental performance results give a good agreement with those ones obtained from the digital computer simulation. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by a variable speed prime mover employing the static VAR compensator (SVC) circuit composed of the thyristor phase controlled reactor (TCR) and the thyristor switched capacitor(TSC) is designed and considered herein for the wind-turbine driven the power conditioner. To validate the effectiveness of the SVC-based voltage regulator of the terminal voltage of the three-phase SEIG, an inductive load parameter disturbances in stand-alone are applied and characterized in this paper. In the stand-alone power utilization system, the terminal voltage response and thyristor triggering angle response of the TCR are plotted graphically. The simulation and the experimental results prove the effectiveness and validity of the proposed SVC which is controlled by the Pl controller in terms of fast response and high performances of the three-phase SEIG driven directly by the rural renewable energy utilization like a variable-speed prime mover.

Experimental Study on Different Principles of Variable Stiffness Actuators (가변강성 액추에이터의 원리에 대한 비교 실험 연구)

  • Baek, Kyu Yeol;Kim, HyunGyu;Seo, TaeWon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1049-1054
    • /
    • 2015
  • Nowadays, there are many researches involving structural actuators, which have adjustable stiffness; they are also called variable stiffness actuators (VSA). The VSAs can adjust the characteristics of actuators for various functions and human-machine safety. This paper describes the design and analysis of two types of VSAs. To adjust stiffness, the actuators are controlled by a principle of lever ratio mechanism, by changing a pivot position or a spring position in the structure with springs. To make the principle workable, the designs are simplified by using a ball screw system with a motor. Each structure shows different static properties with variable rates of stiffness. We have also shown the experimental verification of the dynamic performance of the two types of VSAs. This research can be applied to various industrial fields, where humans work in conjunction with robots.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

Variable length Chromosomes in Genetic Algorithms for Modeling the Class Boundaries

  • Bandyopadhyay, Sanghamitra;Pal, Sankar K.;Murthy, C.A.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.634-639
    • /
    • 1998
  • A methodology based on the concept of variable string length GA(VGA) is developed for determining automatically the number of hyperplanes and their appropriate arrangement for modeling the class boundaries of a given training data set in RN. The genetic operators and fitness functionare newly defined to take care of the variability in chromosome length. Experimental results on different artificial and real life data sets are provided.

  • PDF

Experimental Results on the Energy-bounding Approach to Robustly Stable Rate-mode Bilateral Teleoperation Systems (속도 모드 양방향 원격 제어의 안정화 에너지 제한 방법의 실험 결과)

  • Park, Sung-Jun;Seo, Chang-Hoon;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.552-557
    • /
    • 2011
  • This paper presents experimental results on the energy-bounding approach to a rate-mode bilateral teleoperation control that can guarantee the robust system stability in variable time-delayed telecommunication environments. Previously, rate-mode energy bounding approach [15] was proposed and verified with experimental results using the simulated remote slave model. In this paper, a real experimental setup using an industrial robot (Denso) as a remote slave robot composed and conducted similar experiments with previous paper. In order to guarantee stability of the Denso when contacting with high impedance wall, velocity based impedance control modified by position based is used. Experimental results show that the rate-mode energy bounding approach can guarantee stable bilateral teleoperation system in the free and contact motion with variable time delay.

Experimental Study on Frequency Support of Variable Speed Wind Turbine Based on Electromagnetic Coupler

  • You, Rui;Chai, Jianyun;Sun, Xudong;Bi, Daqiang;Wu, Xinzhen
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.195-203
    • /
    • 2018
  • In the variable speed Wind Turbine based on ElectroMagnetic Coupler (WT-EMC), a synchronous generator is coupled directly to the grid. Therefore, like conventional power plants, WT-EMC is able to inherently support grid frequency. However, due to the reduced inertia of the synchronous generator, WT-EMC is expected to be controlled to increase its output power in response to a grid frequency drop to support grid frequency. Similar to the grid frequency support control of Type 3 or Type 4 wind turbine, inertial control and droop control can be used to calculate the WT-EMC additional output power reference according to the synchronous generator speed. In this paper, an experimental platform is built to study the grid frequency support from WT-EMC with inertial control and droop control. Two synchronous generators, driven by two induction motors controlled by two converters, are used to emulate the synchronous generators in conventional power plants and in WT-EMCs respectively. The effectiveness of the grid frequency support from WT-EMC with inertial control and droop control responding to a grid frequency drop is validated by experimental results. The selection of the grid frequency support controller and its gain for WT-EMC is analyzed briefly.

Experimental Verification of Variable Radius Model and Stiffness Model for Twisted String Actuators (TSAs) (줄 꼬임 구동기의 가변 반지름 모델과 강성 모델에 대한 실험적 검증)

  • Park, Jihyuk;Kim, Kyung-Soo;Kim, Soohyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.419-424
    • /
    • 2017
  • Twisted string actuators (TSAs) are tendon-driven actuators that provide high transmission ratios. Twisting a string reduces the length of the string and generates a linear motion of the actuators. In particular, TSAs have characteristic properties (compliance) that are advantageous for operations that need to interact with the external environment. This compliance has the advantage of being robust to disturbance in force control, but it is disadvantageous for precise control because the modeling is inaccurate. In fact, many previous studies have covered the TSA model, but the model is still inadequate to be applied to actual robot control. In this paper, we introduce a modified variable radius model of TASs and experimentally demonstrate that the modified variable radius model is correct compared to the conventional variable radius string model. In addition, the elastic characteristics of the TSAs are discussed along with the experimental results.

The Study about the New Method of Interface Circuit Design for Variable Resistive Sensors (가변형 저항 센서를 위한 새로운 방식의 인터페이스 회로 설계에 관한 연구)

  • 김동용;박지만;차형우;정원섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.749-752
    • /
    • 1999
  • A new interface circuit for variable resistive sensors is proposed. The interface circuit compose of only two strain gages, a voltage-to-current converter, and current mirror with two outputs. A new dual slope A/D converter based on linear operational transconductance amplifier for the testing of prototype interface circuit is also described. The theory of operation is presented and experimental results are used to verify the theoretical predictions. The results show close agreement between predicted behaviour and experimental performance.

  • PDF