The Third AFSS(1998), 634 —639

Variable Length Chromosomes in Genetic Algorithms
for Modeling the Class Boundaries

Sanghamitra Bandyopadhyay, Sankar K. Pal and C. A. Murthy

Machine Intelligence Unit
Indian Statistical Institute

203 B.T. Road, Calcutta 700 035, INDIA.

e-mail : sankar@isical.ernet.in

Abstract

A methodology based on the concept of variable string length GA (VGA) is de-
veloped for determining automatically the number of hyperplanes and their appro-

priate arrangement for modeling the class boundaries of a given training data set

in RV, The genetic operators and fitness function are newly defined to take care

of the variability in chromosome length. Experimental results on different artificial

and real life data sets are provided.
Keywords:
length.

1 Introduction

Genetic Algorithms (GAs) [1] are randomized
search and optimization techniques guided by the
principles of evolution and natural genetics. They
are efficient, adaptive and robust search processes,
producing near optimal solutions and have a large
amount of implicit parallelism.

In this article, the searching capability of GA is used
for the placement of a number of hyperplanes, say
H, for approximating the decision boundaries of a
given training data set. The method involves en-
coding the parameters of the hyperplanes in binary
strings called chromosomes, in the feature space
that yields minimum misclassification. Since it is
difficult to ascertain the the number of hyperplanes
that may be required for a given data set a priori,
the value is kept variable, using the GA to evolve
an appropriate value adaptively.

Optimum hyperplane fitting, speech recognition, variable string

For this purpose, the concept of variable length
strings in GA has been adopted. Unlike the conven-
tional GA, here the length of a string is not fixed.
The chromosomes, therefore, encode the parame-
ters of a number of hyperplanes, whose value may
now vary. Crossover and mutation operators are ac-
cordingly defined. A factor has been incorporated
into the fitness function that rewards a string with
smaller number of misclassified samples as well as
smaller number of hyperplanes. Let the classifier
so designed utilizing the concept of variable string
lengths be called VG A-classifier.

Note that in a previous investigation using fixed
number of hyperplanes and consequently fixed
string length, it was demonstrated in [2] that the
resulting fixed string length GA based classifier,
subsequently referred to as the GA-classifier, can
be well applied to a variety of data sets having
both non-overlapping, non-convex, and overlapping
classes. Its recognition scores were found to be

comparable Lo, sometimes better than, those of k-

—634 -

NN rule (for different values of k), Bayes maximum
likelihood classifier and multilayer perceptron based

classifier. A comparison of the VGA-classifier

and the previous GA-classifier shows that incor-
poration of VGA is not only able to evolve the
appropriate number of hyperplanes but also pro-
vides classification performance comparable to, of-
ten better than the of the previous fixed length GA-

classifier.

2 Variable String Length GA Classifler

Although the concept of variable string lengths in
genetic algorithm (VGA) has been used earlier in
[3,4,5,6], the operations defined here are new. They
are described here. Note that the sequence of the
different operations for GA (as shown in Fig. 1) is
applicable to VGA too.

Begin
t=0
initialize population P(t)
compute fitness P(t)
repeat
t =t+1
. select P(t) from P(t-1)
crossover P(t)
mutate P(t)
compute fitness P(t)

&mtil termination criterion is achieved
n

Figure 1: Basic steps in GA

Chromosome Representation and Popula-
tion Initialization

The chromosomes are represented by strings of 1, 0
and # (don’t care), encoding the parameters of vari-
able number of hyperplanes. In RV, N parameters
are required for representing one hyperplane. These
are N — 1 angle variables, angle!,...
indicating the orientation of hyperplane i (i =
1,2,...,H when H hyperplanes are encoded in the
chromosome), and one perpendicular distance vari-
able, p' indicating its perpendicular distance from
the origin. Let H,,,, represent the maximum num-
ber of hyperplanes that may be required to model
the decision boundary of a given data set. It is
specified a priori. Let the angle and perpendicular
distance variables be represented by b; and by bits
respectively. Then Iy, the number of bits required
to represent a hyperplane and l;4,, the maximum
length that a string can have are

i
yangley_,,

l”=(N—1)*b1+b2
lma.t = Ilrnaz * lH

1)
)

respectively.

Let string i represent H; hyperplanes. Then its
length [; is
l,‘ = I;{,' * lH.

Initial population is created in such a way that the
first and the second strings encode the parameters
of Hpar and 1 hyperplanes respectively to ensure
sufficient diversity in the population. For the re-
maining strings, the number of hyperplanes, H,, is
generated randomly in the range [1, Hy,qz), and the

l; bits are initialized randomly to 1s and 0s.

Fitness Computation

The fitness function (which is maximized) is defined
in such a way that

i: a string with smaller value of misclassifica-
tions is considered to be fitter than a string
with a larger value, irrespective of the num-
ber of hyperplanes i.e., it first of all minimizes
the number of misclassified points, and then

il : among two strings providing the same num-
ber of misclassifications, the one with the
smaller number of hyperplanes is considered
to be fitter.

The number of misclassified points for a string i en-
coding H; hyperplanes is found as follows : Let the
H; hyperplanes provide M; distinct regions which
contain at least one training data point. (Note that
although M; < 2%, in reality it is upper bounded
by the size of the training data set.) For each such
region and from the training data points that lie in
this region, the class of the majority is determined,
and the region is considered to represent (or be la-
beled by) the said class. Points of other classes that
lie in this region are considered to be misclassified.
The sum of the misclassifications for all the A re-
gions constitutes the total misclassification miss;
associated with the string. Accordingly, the fitness
of string ¢ may be defined as

fiti = (n —miss;) —aH;l < H; < Hyay

= 0, otherwise ‘

(3)
(4)

—635—

where n = size of the training data set and a = 711—

mazx

Let us now explain how the first criterion is sat-
isfied. Let two strings i and j have number of
misclassifications miss; and miss; respectively, and
number of hyperplanes encoded in them be Ii; and
H; respectively. Let miss; < miss; and H; > Hj.
(Note that since the number of misclassified points
can only be integers, miss; > miss; + 1.) Then,

Jit; = (n — miss;) — all;,
fit; = (n — miss;) — oH;.

The aim now is to prove that fit, > fit;, or that
fiti — fit; > 0. From the above equations,
f‘l:t,' - f‘LtJ = missj aad miss,« - a(II,- - I{])

If H; = 0, then fit; = 0 (from Eq. 4) and there-
fore fit; > fit;. When 1 < H; < Hpg, we have
a(H;— H;) < 1since (H; — H;) < Hyoz. Obviously,
miss; — miss; > 1. Therefore fit; — fit; > 0, or,
fitg > fit;.

The second criterion is also fulfilled since fit; < fit;

when miss; = miss; and H; > H;.
Genetic Operators

Among the operations of selection, crossover and
mutation, the selection operation used here may
be one of those used in conventional GA, while
crossover and mutation need to be newly defined
for VGA. These are now described in detail.

Crossover : 'Two strings, 7 and j, having lengths
li and l; respectively are selected from the mat-
ing pool. Let I; < l;. Then string i is padded
with #s so as to make the two lengths equal. Con-
ventional crossover like single point crossover, two
point crossover (Goldberg, 1989) is now performed
over these two strings with probability u.. The fol-
lowing two cases may now arise :

(a) All the hyperplanes in the offspring are com-
plete. (A hyperplane in a string is called complete
if all the bits corresponding to it are either defined
(i.e., 0s and 1s) or #s. Otherwise it is incomplete.)
(b) Some hyperplanes are incomplete.

In the second case let u = number of defined bits
(either 0 or 1) and ¢t = total number of bits per hy-
perplane = (N —1) xb; + bz (from Eq. 1). Then, for
each incomplete hyperplane, all the #s are set to de-
fined bits (either 0 or 1 randomly) with probability

¥. In case this is not permitted, all the defined bits
are set to #. Thus each hyperplane in the string
becomes complete. Subsequently, the string is rear-
ranged so that all the #s are pushed to the end, or
in other words all the hyperplanes are transposed
to the beginning of the strings. The information
about the number of hyperplanes in the strings is
updated accordingly.

Mulation :
bility in the method, the mutation operator is de-
fined in such a way that it can both increase and
decrease the string length. For this, the strings
are padded with #s such that the resultant length
becomes equal to ly,.;. Now for each defined bit
position, it is determined whether conventional mu-
tation (Goldberg, 1989) can be applied or not with
probability si,,. Otherwise, the position is set to
with probability jim,. Each undefined position
is set to a defined bit (randomly chosen) accord-
ing to another mutation probability fsm,. These are
described in Fig. 2.

In order to introduce greater flexi-

Begin
l; = length of string ¢
Pad string ¢ with # so that
its length becomes 1,4,
for k =1 to Ly, do
Generate rnd, rndl and rnd2

randomly in [0,1]
if k < l; do /* defined bits */
if rnd < p,, do
/* Conventional mutation */
flip bit &k of string ¢
else /* try changing to # */
if rndl < pim, do
Set bit k of string ¢ to #
f;indif
elseeI}s‘hk > e, #%/
if rnd2 < pi,y, do
/* Set to defined */
Position k of string ¢ set

to 0 or 1 randomly

endifl
endif
_endfor
End

Iigure 2: Mutation operation for string 4

Note that mutation may result in some incomplete
hyperplanes, and these are handled in a manner,
as done for crossover operation. For example, the
operation on the defined bits, i.e., when & < I; in
Fig. 2, may result in a decrease in the string length,
while the operation on #s, i.e., when k& > [; in the
figure, may result in an increase in the string length.
Also, mutation may yield strings having all #s indi-

—636—

cating that no hyperplanes are encoded in it. Con-
sequently, this string will have {itness = 0 and will
be automatically eliminated during selection. &

As in conventional GAs, the operations of selection,
crossover and mutation are performed here over a
number of generations till a user specified termina-
tion condition is attained. Elitism is incorporated
such that the best string seen upto the current gen-
erations is preserved in the population. The best
string of the last generation, thus obtained, along
with its associated labeling of regions provides the
classification boundary of the n training samples.
After the design is complete, the task of the classi-
fier is to check, for an unknown pattern, the region

in which it lies, and to put the label accordingly.
3 Implementation and Results

The experimental investigation presented in this
section demonstrates the effectiveness of VGA in
automatically determining the value of H of the
classifier for two sets of artificial data, a speech data
and Iris data. The recognition scores of the VGA-
classifier are also compared with those of the fixed
length GA-classifier [2].

The 2-dimensional artificial data sets, ADS 1 (Fig.
3) and ADS 2 [2], consist of 557 and 417 points
respectively belonging to two classes. The real life
speech data, Vowel [2], consists of 871 samples hav-
ing three feature values (corresponding to the three
formant frequencies) and six classes {4, a,1,u,¢,0}.
The class structures of this data set are known to
be highly overlapping. Iris data comprises 150 sam-
ples having four features and three classes with 50
points in each class.

A fixed population size of 20 is chosen. Roulelte
wheel strategy [1] is used to implement propor-
tional selection. Single point crossover is applied
with a fixed crossover probability of 0.8. A vari-
able value of mutation probability ji,, is varied in
the range [0.01, 0.333] [2]. The values of pm, and
lim, mentioned earlier are set to 0.1. The process is
executed for a maximum 3000 iterations. Elitism
is incorporated by replacing the worst string of the
present generation by the best string seen upto the
previous generation.

Tables 1 and 2 show the number of hyperplanes

Hvea as determined automatically by the VGA-
classifier for modeling the class boundaries of the
aforesaid four data sets for two different values of
H oz Viz., Hpar = 10 and Hy,er = 6, when the clas-
sifier is trained with 10% data. Tables 3 and 4 show
the number of hyperplanes Hy ¢4 as determined au-
tomatically by the VG A-classifier for modeling the
class boundaries of the afoeresaid four data sets for
two different values of Hyuap viz., Hyee = 10 and
H ez = 6, when the classifier is trained with 50%
data. The overall recognition scores obtained dur-
ing testing of the VG A-classifier along with their
comparison with those obtained for the fixed length
version (i.e., GA-classifier) with H = 6 and 10 are
also shown in the tables. (Note that H = 6 had
been found to provide, on an average, good recogni-
tion scores in earlier experiments [2] with these data
sets.) The scores provided are the average values

obtained over 5 different runs of the algorithms.

Table 1: Hyga for Hpa, = 10 and the com-
parative overall recognition scores (%) during
testing (when 10% of the data set is used for
training and the remaining 90% for testing)

Data set VG A-classifier Score for
Hper = 10 GA-classifier
Hyca Score H =10
ADS 1 3 95.62 84.26
ADS 2 6 88.16 84.04
Vowel 6 73.66 69.21
Iris 2 95.56 76.29

Table 2: Hyga for Hyg, = 6 and the com-
parative overall recognition scores (%) during
testing (when 10% of the data set is used for
training and the remaining 90% for testing)

Data set VG A-classifier Score for
Hmaz =6 GA-classifier
Hyca Score H=58
ADS 1 4 96.21 93.22
ADS 2 5 88.35 88.29
Vowel 6 71.19 71.99
Iria 2 95.81 93.33

The results demonstrate that in all the cases, the
VG A-classifier is able to evolve an appropriate
value of Hyg, from H,,.. In addition, its recogni-
tion score on the test data set is found, on an av-
erage, to be higher than that of the GA-classifier.
There is only one exception to this for the Vowel

—637—

Table 3: Hyga for Hype: = 10 and the com-
parative overall recognition scores (%) during
testing (when 50% of the data set is used for
training and the remaining 50% for testing)

Data set VGA-classifier Score for
Hmaz =10 GA-classifier
Hyeca Score H=10
ADS 1 4 96.41 95.92
ADS 2 5 95.22 94.56
Vowel 6 78.26 T0.77
{ris 2 97.60 93.33

Table 4: Hyga for Hpa: = 6 and the com-
parative overall recognition scores (%) during
testing (when 50% of the data set is used for
training and the remaining 50% for testing)

Data set VGA-classifier Score for
Hmgz =6 GA-classifier
Hyera Score H=6
ADS 1 4 96.83 96.05
ADS 2 3 96.26 96.17
Vowel 6 7711 76.68
Iris 2 97.67 97.33

data when 10% of the samples is used for training
and Hp.: = 6 (Table 2). In this case, Hpar = 6
does not appear to be a high enough value for mod-
eling the decision boundaries of Vowel classes with
VG A-classifier. This is reflected in both the cases
for 10% and 50% training data, where the scores for
VG A-classifier with Hp,, = 6 are less than those
with H,,.. = 10.

In all the cases where the number of hyperplanes
for modeling the class boundaries is less than 6, the
scores of VG A-classifier with H,,,, = 6 are found
to be superior to those with Hpe, = 10. This is so
because with Hyn,, = 10, the search space is larger
as compared to that for H,,, = 6, which makes
it difficult for the classifier to arrive at the opti-
mum arrangement quickly or within the maximum
number of iterations considered here. (Note that
it may have been possible to further improve the
scores and also reduce the number of hyperplanes,
if more iterations of VGA were executed.)

In general, the scores of the GA-classifier (fixed
length version) with H = 10 are seen to be lower
than those with H = 6 because of two reasons; over-
fitting of the training data and difficulty of search-
ing a larger space. The only exception is with

Vowel for training with 50% data where the score
for H = 10 is larger than that for H = 6. This is
expected, in view of the overlapping classes of the
data set and the significantly large size of the train-
ing data. One must note in this context that the
detrimental effect of overfitting on the generaliza-
tion performance increases with decrease in the size
of the training data.

As an illustration, the decision boundary obtained
by the VG A-classifier for ADS 1 when 10% of the
data set is chosen for training is shown in Fig. 3.

4 Discussion and Conclusions

The concept of variable string lengths in genetic al-
gorithm has been used here for the purpose of place-
ment of a number of hyperplanes in RY for modeling
the class boundaries of a given training data set.
New genetic operators are defined to deal with the
concept of variable string lengths for formulating
the classifier. The fitness function has been defined
so that its maximization indicates minimization of
the number of misclassified samples as well as the
required number of hyperplanes. It is proved that
for infinitely large number of iterations the method
is able to arrive at the optimal number of misclas-
sified samples and will need optimal number of hy-
perplanes for this purpose.

Experimental evidence for different percentages of
training and test data indicates that given a value
of Hpaz, the algorithm can not only be able to au-
tomatically evolve an appropriate value of H for a
given data set, but also result in improved perfor-
mance of the classifier. '

Acknowledgments : This work was carried out
when Ms. Sanghamitra Bandyopadhyay held the
Dr. K. S. Krishnan fellowship awarded by the De-

partment of Atomic Energy, Govt. of India.

References

1 D. E. Goldberg, Genetic Algorithms : Search,
Optlimization and Machine Learning. New York:
Addison-Wesley, 1989.

2 S. Bandyopadhyay, C. A. Murthy, and S. K. Pal,
“Pattern classification using genetic algorithms,”
Patt. Recog. Lett., vol. 16, pp. 801-808, August
1995.

—638—

3 R. Srikanth, R. George, N. Warsi, D. Prabhu,
F. Petry, and B. Buckles, “A variable-length genetic
algorithms for clustering and classification,” Patt.
Recog. Lett., vol. 16, pp. 801-808, August 1995.

4 S.F.Smith, A Learning System Based on Ge-
netic Algorithms. PhD thesis, University of Pitts-
burg, PA, 1980.

5 S. A. Harp and T. Samad, “Genetic synthesis
of neural network architecture,” in Handbook of
Genetic Algorithms, (L. Davis, ed.), pp. 202 - 221,
New York: Van Nostrand Reinhold, 1992.

6 V. Maniezzo, “Genetic evolution of the topology
and weight distribution of neural networks,” IEEE
Trans. Neural Networks, vol. 5, pp. 39-53, 1994.

825 11111111111113131111112112111111
2111321112131111111311111111111111
11111111111313311211112113111111111
1111111211311213211231332112111111111
1111111111 1111111111
1111111111
1111111
2 22232772 (Y.
111112 22 22222222 111
111111 2222 22222222 1111
11111 222222 22222222 11111
X, |11 22222222 11111
11111 11111
11111 11111
111111 11111
1111111 111111
1111111 111111
11111111 1111111
1111111132322312113422111111121111112
1111111111221311%2112111221131111121111
1111113111112334%111112111311311112
11112131311110211021111121111111
300]
800

5, 2750

Figure 3: ADS 1 along with VGA boundary for H,,,, = 10 when 10% of the data set is used

for training

—~639~

