• Title/Summary/Keyword: Experimental stress analysis

Search Result 2,082, Processing Time 0.027 seconds

Effect of Experimental Electrization Stress on the Pathogenesis of Escherichia coli in Mice (실험적 감전 Stress 가 Escherichia coli 감염마우스의 기병에 미치는 영향)

  • Lee, Bang Whan
    • Korean Journal of Veterinary Research
    • /
    • v.13 no.2
    • /
    • pp.119-129
    • /
    • 1973
  • A hypothesis that is a stress condition in animal may cause either enhancement or reduction of the host resistance against microbial infection was experimentally studied. Among of many processes for stress formation an experimental electrization in mice was devised, on the bases of blood picture analysis, and studied the effect of experimental electrization of mice on E. coll infection. The results obtained were as follows. 1. Electrization with ordinary current, A. C. 60 cps., on the path of symmetrical line of both posterior limbs at 20 to 100 volts (less than 10 mA) for 15 to 30 seconds was able to induce a stress reaction in blood pattern without showing any dangers of electrocution, electric burns and other residual signs, and no correlation between blood pattern of the reaction and an amount of current between 20 to 100 volts was observed. As the electrodes, two of 21 gauge hypodermic needles were used, when the electrization each of them were inserted into the center of toe tissue of the both legs. 2. Serum protein fractions following the experimental electrization showed a tendency of a low A/G ratio and a high value of ${\alpha}$-globulin. 3. In the studies on the effect of electrical stress on the pathogenesis of E. coli in mice, a group in which a simultaneous electrization and infection, and a group infected two hours after electrization showed 80 per cent mortality. On the other hand, infection after 20 hours electrization and control groups showed their mortality of 40 and 60 per cent respectively.

  • PDF

Distribution of the Equivalent Rectangular Stress Block for High-Strength Polymer Concrete Beams (고강도 폴리머 콘크리트보의 등가직사각형 응력분포)

  • 김관호;연규석;김남길;조규우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.915-920
    • /
    • 2001
  • This study was conducted to analysis the distribution of the rectangular stress block for high-strength polymer concrete beam. C-shaped specimens were produced and tested to compute parameters of the rectangular stress block. They were $\kappa_{1}$ = 0.73, $\kappa_{3}$ = 0.94 and $\gamma$= 0.845, respectively. Experimental value of flexural strength of beam was same to be compared with theoretical value. But there is desirable to need many experimental data in order to exact design of polymer concrete structure.

  • PDF

A Study on the Stress Distribution and Stress Concentration of Pipe with Respect to Attached Shape and Method of the Bracket in a Welding Structure (브래킷 결합형식에 따른 용접 구조물의 파이프에서 발생하는 응력분포와 응력집중에 관한 연구)

  • Jeon, Hyung-Yong;Sung, Rak-Won;Han , Geun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.28-37
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method and test for considering stress distribution and stress concentration to be generated according to the change of attached shape and method of the bracket to pipe in welding structure. Generally, members that consist structures are subjected to various forces and are jointed each other with a number of bracket. In this case, circular pipe was adapted in order to weld these members easily and to study the optimal design which is used a beam with shape section as main components of the structure, According to attached shape and method, distributed stress on circular pipe is appeared so differently. This may result deeply effects with respect to thickness, material properties. So a study on attaching shape and method of bracket to circular pipe is needed. In this paper, to obtain the maximum equivalent stress or stress concentration was used experimental and F.E.M. analysis. First five parameter was defined with respect to attached a shape and method to circular pipe i.e. the variation of the attached area, the variation of the attached shape, the variation of the attached length, the variation of both directin angles, the variation of the upper angle. Afterward the experimental analysis was practiced as the variation of the both direction angel and the finite element analysis was practiced as each parameters. We can discover stress distribution and stress concentration according to the change of form of bracket. And the result can be referenced for a design of similar structure.

  • PDF

Effects of welding direction and residual stress on the Laser welds (용접방향에 따른 겹치기 레이저 용접부의 피로강도)

  • Cho, Sung-Kyu;Jang, Sang-Kyu;Seo, Jung;Kim, Jung-Oh
    • Laser Solutions
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 2002
  • Finite element analysis and experiment were peformed to estimate the fatigue strength for the lap joint of laser weld. To consider quantitatively residual stress which effects on the fatigue strength of the lap joint of laser weld, after three dimensional modeling for the longitudinal and transverse direction, residual stress fields in the weldment were calculated using thermo-elastic-plastic finite element analysis, then the equivalent fatigue stress considering the residual stress was obtained. To ensure reliability of calculated fatigue strength, fatigue tests were performed. The calculated and experimental results showed a good agreement. The fatigue strength considering a residual stress was lower than that of without considering a residual stress in the lap joint of laser welding. The fatigue strength in the transverse direction was higher than that of longitudinal direction.

  • PDF

FATIGUE DAMAGE PARAMETER OF SPOT WELDED JOINTS UNDER PROPORTIONAL LOADING

  • KANG H. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.285-291
    • /
    • 2005
  • In this paper, the author proposes a fatigue damage parameter of spot welded joints under proportional loading. The proposed fatigue damage parameter is developed based on von Mises' equivalent stress and local structural stress at the edge of spot weld nugget. The structural stress at the edges of the weld nugget in each sheet is calculated using the forces and moments that are determined by finite element analysis. A structural equivalent stress is then calculated by von Mises' equivalent stress equation. The structural equivalent stresses are correlated to experimental fatigue life of the spot welded joints. The proposed parameter is evaluated with fatigue test data of spot welds subjected to multi axial and tensile-shear loads. Sheppard's parameter and Rupp and co-workers' parameter are also evaluated with the same test data to compare with the author's parameter. This proposed parameter presents a better correlation with experimental fatigue data than those of Sheppard's and Rupp and co-workers' parameter. The proposed parameter should be very effective for durability calculations during the early design phase since coarsely meshed finite element models can be employed.

A numerical analysis of compressive strength of rectangular concrete columns confined by FRP

  • Lin, Huei-Jeng;Liao, Chin-I;Yang, Chin
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.235-248
    • /
    • 2006
  • This investigation presents an analysis procedure for simulating the compressive behavior of a rectangular concrete column confined by fiber-reinforced plastic (FRP) under uniaxial load. That is, the entire stress-strain curve can be drawn through the present analysis procedure. The modified Mander's stress-strain model (Mander, et al. 1988) and finite element method are adopted in this analysis procedure. The numerical analysis results are compared with the experimental results to verify the accuracy of the analysis procedure. This study offers a useful analysis procedure of researching the compressive behavior of rectangular concrete columns confined by FRP. Two main parameters, the number of FRP layers and the radius of the round corners of a rectangular column, are investigated. The numerical results show that non-uniform stresses occur and reduce the sectional effective area owing to the geometry of the confined rectangular column. The stresses are concentrated at the corners of the rectangular column. Compressive strength of a rectangular column increases greatly because the number of FRP layers increase. The maximum predicted compressive stress of the rectangular column has approximately 10% error as compared to the experimental results. Comparing the numerical and experimental results demonstrates that the accuracy of this analysis procedure is credible. Besides, the stress-strain curves of the R30 models, which are rectangular concrete column with large radius of round corners, are almost bilinear. This calculated results conform to the expectation and show the present analysis procedure are more suitable than Mander's model (1988) to analyze the compressive behavior of the rectangular concrete column confined by FRP.

Fatigue Analysis of Fiber-Reinforced Composites Using Damage Mechanics (손상역학을 이용한 섬유강화 복합재료의 피로해석)

  • Lim Dong-Min;Yoon Ihn-Soo;Kang Ki-Weon;Kim Jung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.112-119
    • /
    • 2006
  • Due to their intrinsic anisotropy, composite materials show quite complicated damage mechanism with their fiber orientation and stacking sequence and especially, their fatigue damage process is sequential occurrence of matrix cracking, delamination and fiber breakage. In the study, to propose new model capable of describing damage mechanism under fatigue loading, fatigue analysis of composite laminates based on damage mechanics, are performed. The average stress is disassembled with stress components of matrix, fiber and interlaminar interface through stress analysis. Each stress components are used to assess static damage analysis based on continuum damage mechanics (C.D.M.). Fatigue damage curves are obtained from hysteresis loop and assessed by the fatigue damage analysis. Then, static and fatigue damage analysis are combined. Expected results such as stress-cycle relation are verified by the experimental results of fatigue tests.

Analysis of Stress Distribution around a Central Crack Tip in a Tensile Plate Using Phase-Shifting Photoelasticity and a Power Series Stress Function (위상이동 광탄성법과 멱급수형 응력함수를 이용한 인장시편 중앙 균열선단 주위 응력장 해석)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • This paper presents stress distribution around a central crack tip in a tensile plate using phase-shifting photoelasticity and a power series stress function. Isochromatic data along the straight lines far from the crack tip were obtained by phase shifting photoelasticity and were used as input data of the hybrid experimental analysis. By using the complex-type power series stress equations, the photoelastic stress distribution fields in the vicinity of the crack and the mode I stress intensity factor were obtained. With the help of image processing software, accuracy and reliability was enhanced by twice multiplying and sharpening the measured isochromatics. Actual and reconstructed fringes were compared qualitatively. For quantitative comparison, percentage errors and standard deviations of the percentage errors were calculated for all measured input data by varying the number of terms in the stress function. The experimental results agreed with those predicted by finite element analysis and empirical equation within 2 percent error.

Stress Distribution in the Vicinity of a Crack Tip in a Plate under Tensile Load Using Displacement Data of Finite Element Method (유한요소 변위값을 이용한 인장하중 판재 균열선단 주위의 응력분포 해석)

  • Baek, Tae-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.84-91
    • /
    • 2008
  • Due to the complexity of the engineering problems, it is difficult to obtain directly the stress field around the crack tip by theoretical derivation. In the paper, the hybrid method is employed to calculate full-field stress around the crack tip in uni-axially leaded finite width tensile plate, using the displacement data of given points calculated by finite element method as input data. The method uses complex variable formulations involving conformal mappings and analytical continuity. In order to accurately compare calculated fringes with experimental ones, both actual and reconstructed photoelastic fringe patterns are two times multiplied and sharpened by digital image processing. Reconstructed fringes by hybrid method are quite comparable to actual fringes. The experimental results indicate that Mode I stress intensity factor analyzed by the hybrid method are accurate within a few percent compared with ones obtained by empirical equation and finite element analysis.

A Study of Heat Flow and Residual Stress Analysis in Pipe-plate Gas Metal Arc Brazing (파이프-평판 GMAB 접합부의 열유동 및 잔류음력 해석에 관한 연구)

  • 이태영;김재웅;이목영;정평석
    • Journal of Welding and Joining
    • /
    • v.19 no.4
    • /
    • pp.413-422
    • /
    • 2001
  • In this study. two-dimensional heat flow and residual stress in arc brazing to join the pipe and plate structure were analyzed by using a commercialized FEM package. Advantages offered by arc brazing are that strong joints can be produced with lower heat input than that of previous gas metal arc welding and narrower heat affected zone can usually be obtained than that in the case of torch brazing. To investigate the effects of process variables and minimize the thermal effects on the structure, this study presents a method for analyzing the heat flow and residual stress in arc brazing process according to variables such as traveling speed, torch angle and position. The simulation results were compared with the experimental ones to verify the numerical analysis method. The experiments include the measurement of HAZ size from the section of joints and residual stresses by using strain gages named 'section method'. A comparatively good agreement between the results of numerical analysis and experimental ones could be obtained in both of the temperature distribution and residual stress of the brazed structure. Using the proposed numerical analysis method, the process parameters were evaluated to get proper arc brazing conditions.

  • PDF