• Title/Summary/Keyword: Experimental design and analysis

Search Result 5,427, Processing Time 0.044 seconds

Experimental Study on Energy Saving through FAN Airflow Control in the Generator Room of a 9200-ton Training Ship (9200톤급 실습선 발전기실 FAN 송풍유량 제어를 통한 선박에너지 절약에 관한 실험적 연구)

  • Moon-seok Choi;Chang-min Lee;Su-jeong Choe;Jae-jung Hur;Jae-Hyuk Choi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.697-703
    • /
    • 2023
  • As a part of the global industrial efforts to reduce environmental pollution owing to air pollution, regulations have been established by the International Maritime Organization (IMO). The IMO has implemented various regulations such as EEXI, EEDI, and CII to reduce air pollution emissions from ships. They are also promoting measures to decrease the power consumption in ships, aiming to conserve energy. Most of the power used in ships is consumed by electric motors. Among the motors installed on ships, the engine room blower that takes up a significant load, operates at a constant irrespective of demand. Therefore, energy savings can be expected through frequency control. In this study, we demonstrated the efficacy of energy savings by controlling the frequency of the electric motor of the generator blower that supplies combustion air to the generator's turbocharger. The system was modeled based on the output data of the turboharger outlet temperature in response to the blower frequency inpu. A PI control system was established to control the frequency with the target being the turbocharger outlet temperature. By maintaining the turbocharger design standard outlet temperature and controlling the blower frequency, we achieved an annual energy saving of 15,552kW in power consumption. The effectiveness of energy savings through frequency control of blower fans was verified during the summer (April to September) and winter (March to October) periods. Based on this, we achieved annual fuel cost savings of 6,091 thousand won and reduction of 8.5 tons of carbon dioxide, 2.4 kg of SOx, and 7.8 kg of NOx air pollutants on the training ship.

Studies on the selection in soybean breeding. -II. Additional data on heritability, genotypic correlation and selection index- (대두육종에 있어서의 선발에 관한 실험적연구 -속보 : 유전력ㆍ유전상관, 그리고 선발지수의 재검토-)

  • Kwon-Yawl Chang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.89-98
    • /
    • 1965
  • The experimental studies were intended to clarify the effects of selection, and also aimed at estimating the heritabilities, the genotypic correlations among some agronomic characters, and at calculating the selection index on some selective characters for the selection of desirable lines, under different climatic conditions. Finally practical implications of these studies, especially on the selection index, were discussed. Twenty-two varieties, determinate growing habit type, were selected at random from the 138 soybean varieties cultivated the year before, were grown in a randomized block design with three replicates at Chinju, Korea, under May and June sowing conditions. The method of estimating heritabilities for the eleven agronomic characters-flowering date, maturity date, stem length, branch numbers per plant, stem diameter, plant weight, pod numbers per plant, grain numbers per plant and 100 grain weight, shown in Table 3, was the variance components procedures in a replicated trial for the varieties. The analysis of covariance was used to obtain the genotypic correlations and phenotypic correlations among the eight characters, and the selection indexes for some agronomic characters were calculated by Robinson's method. The results are summarized as follows: Heritabilities : The experiment on the genotype-environment interaction revealed that in almost all of the characters investigated the interaction was too large to be neglected and materially affected the estimates of various genotypic parameters. The variation in heritability due to the change of environments was larger in the characters of low heritability than in those of high heritability. Heritability values of flowering date, fruiting period (days from flowering to maturity), stem length and 100 grain weight were the highest in both environments, those of yield(grain weight) and other characters were showed the lower values(Table 3). These heritability values showed a decreasing trend with the delayed sowing in the experiments. Further, all calculated heritability values were higher than anticipated. This was expected since these values, which were the broad sense heritability, contain the variance due to dominance and epistasisf in addition to the additive genetic variance. Genotypic correlations : Genotypic correlations were slightly higher than the corresponding phenotypic correlations in both environments, but the variation in values due to the change of environment appeared between grain weight and some other characters, especially an increase between grain weight and flowering date, and the total growing period(Table 6). Genotypic correlations between grain weight and other characters indicated that high seed yield was genetically correlated with late flowering, late maturity, and the other five characters namely branch numbers per plant, stem diameter, plant weight, pod numbers per plant and grain numbers per plant, but not with 100 grain weight of soybeans. Pod numbers and grain numbers per plant were more closely correlated with seed yields than with other characters. Selection index : For the comparison and the use of selection indexes in the selection, two kinds of selection indexes were calculated, the former was called selection index A and the later selection index B as shown in Table 7. Selection index A was calculated by the values of grain weight per plant as the character of yield(character Y), but the other, selection index B, was calculated by the values of pod numbers per plant, instead of grain weight per plant, as the character of yield'(character Y'). These results suggest that selection index technique is useful in soybean breeding. In reality, however, as the selection index varies with population and environment, it must be calculated in each population to which selection is applied and in each environment in which the population is located. In spite of the expected usefulness of selection index technique in soybean breeding, unsolved problems such as the expense, time and labor involved in calculating the selection index remain. For these reasons and from these experimental studies, it was recognized that in the breeding of self-fertilized soybean plants the selection for yield should be based on a more simple selection index such as selection index B of these experiments rather than on the complex selection index such as selection index A. Furthermore, it was realized that the selection index for the selection should be calculated on the basis of the data of some 3-4 agronomic characters-maturity date(X$_1$), branch numbers per plant(X$_2$), stem diameter(X$_3$) and pod numbers per plant etc. It must be noted that it should be successful in selection to select for maturity date(X$_1$) which has high heritability, and the selection index should be calculated easily on the basis of the data of branch numbers per plant(X$_2$), stem diameter(X$_3$) and pod numbers per plant, directly after the harvest before drying and threshing. These characters should be very useful agronomic characters in the selection of Korean soybeans, determinate growing habit type, as they could be measured or counted easily thus saving time and expense in the duration from harvest to drying and threshing, and are affected more in soybean yields than the other agronomic characters.

  • PDF

The Influence of Ventilation and Shade on the Mean Radiant Temperature of Summer Outdoor (통풍과 차양이 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.100-108
    • /
    • 2012
  • The purpose of the study was to evaluate the influence of shading and ventilation on Mean Radiant Temperature(MRT) of the outdoor space at a summer outdoor. The Wind Speed(WS), Air Temperature(AT) and Globe Temperature(GT) were recorded every minute from $1^{st}$ of May to the $30^{th}$ of September 2011 at a height of 1.2m above in four experimental plots with different shading and ventilating conditions, with a measuring system consisting of a vane type anemometer(Barini Design's BDTH), Resistance Temperature Detector(RTD, Pt-100), standard black globe(${\O}$ 150mm) and data acquisition systems(National Instrument's Labview and Compfile Techs' Moacon). To implement four different ventilating and shading conditions, three hexahedral steel frames, and one natural plot were established in the open grass field. Two of the steel frames had a dimension of $3m(W){\times}3m(L){\times}1.5m(H)$ and every vertical side covered with transparent polyethylene film to prevent lateral ventilation(Ventilation Blocking Plot: VP), and an additional shading curtain was applied on the top side of a frame(Shading and Ventilation Blocking Plot: SVP). The third was $1.5m(W){\times}1.5m(L){\times}1.5m(H)$, only the top side of which was covered by the shading curtain without the lateral film(Shading Plot: SP). The last plot was natural condition without any kind of shading and wind blocking material(Natural Open Plot: NP). Based on the 13,262 records of 44 sunny days, the time serial difference of AT and GT for 24 hour were analyzed and compared, and statistical analysis was done based on the 7,172 records of daytime period from 7 A.M. to 8 P.M., while the relation between the MRT and solar radiation and wind speed was analyzed based on the records of the hottest period from 11 A.M. to 4 P.M.. The major findings were as follows: 1. The peak AT was $40.8^{\circ}C$ at VP and $35.6^{\circ}C$ at SP showing the difference about $5^{\circ}C$, but the difference of average AT was very small within${\pm}1^{\circ}C$. 2. The difference of the peak GT was $12^{\circ}C$ showing $52.5^{\circ}C$ at VP and $40.6^{\circ}C$ at SP, while the gap of average GT between the two plots was $6^{\circ}C$. Comparing all four plots including NP and SVP, it can be said that the shading decrease $6^{\circ}C$ GT while the wind blocking increase $3^{\circ}C$ GT. 3. According to the calculated MRT, the shading has a cooling effect in reducing a maximum of $13^{\circ}C$ and average $9^{\circ}C$ MRT, while the wind blocking has heating effect of increasing average $3^{\circ}C$ MRT. In other words, the MRT of the shaded area with natural ventilation could be cooler than the wind blocking the sunny site to about $16^{\circ}C$ MRT maximum. 4. The regression and correlation tests showed that the shading is more important than the ventilation in reducing the MRT, while both of them do an important role in improving the outdoor thermal comfort. In summary, the results of this study showed that the shade is the first and the ventilation is the second important factor in terms of improving outdoor thermal comfort in summer daylight hours. Therefore, it can be apparently said that the more shade by the forest, shading trees etc., the more effective in conditioning the microclimate of an outdoor space reducing the useless or even harmful heat energy for human activities. Furthermore, the delicately designed wind corridor or outdoor ventilation system can improve even the thermal environment of urban area.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

The Variation of Natural Population of Pinus densiflora S. et Z. in Korea (III) -Genetic Variation of the Progeny Originated from Mt. Chu-wang, An-Myon Island and Mt. O-Dae Populations- (소나무 천연집단(天然集團)의 변이(變異)에 관(關)한 연구(硏究)(III) -주왕산(周王山), 안면도(安眠島), 오대산(五臺山) 소나무집단(集團)의 차대(次代)의 유전변이(遺傳變異)-)

  • Yim, Kyong Bin;Kwon, Ki Won
    • Journal of Korean Society of Forest Science
    • /
    • v.32 no.1
    • /
    • pp.36-63
    • /
    • 1976
  • The purpose of this study is to elucidate the genetic variation of the natural forest of Pinus densiflora. Three natural populations of the species, which are considered to be superior quality phenotypically, were selected. The locations and conditions of the populations are shown in table 1 and 2. The morphological traits of tree and needle and some other characteristics were presented already in our first report of this series in which population and family differences according to observed characteristics were statistically analyzed. Twenty trees were sampled from each populations, i.e., 60 trees in total. During the autumn of 1974, matured cones were collected from each tree and open-pollinated seeds were extracted in laboratory. Immediately after cone collection, in closed condition, the morphological characteristics were measured. Seed and seed-wing dimensions were also studied. In the spring of 1975, the seeds were sown in the experimental tree nursery located in Suweon. And in the April of 1976, the 1-0 seedlings were transplanted according to the predetermined experimental design, randomized block design with three replications. Because of cone setting condition. the number of family from which progenies were raised by populations were not equal. The numbers of family were 20 in population 1. 18 in population 2 and 15 in population 3. Then, each randomized block contained seedlings of 53 families from 3 populations. The present paper is mainly concerned with the variation of some characteristics of cone, seed, needle, growth performance of seedlings, and chlorophyll and monoterpene compositions of needles. The results obtained are summerized as follows. 1. The meteorological data obtained by averaging the records of 30 year period, observed from the nearest station to each location of populations, are shown in Fig. 3, 4, and 5. The distributional pattern of monthly precipitation are quite similar among locations. However, the precipitation density on population 2, Seosan area, during growing season is lower as compared to the other two populations. Population 1. Cheong-song area, and population 3, Pyong-chang area, are located in inland, but population 2 in the western seacoast. The differences on the average monthly air temperatures and the average monthly lowest temperatures among populations can hardly be found. 2. Available information on the each mother trees (families) studied, such as age, stem height, diameter at breast height, clear-bole-length, crown conditions and others are shown in table 6,7, and 8. 3. The measurements of fresh cone weight, length and the widest diameter of cone are given in Tab]e 9. All these traits arc concerned with the highly significant population differences and family differences within population. And the population difference was also found in the cone-index, that is, length-diameter ratio. 4. Seed-wing length and seed-wing width showed the population differences, and the family differences were also found in both characteristics. Not discussed in this paper, however, seed-wing colours and their shapes indicate the specificity which is inherent to individual trees as shown in photo 3 on page 50. The colour and shape are fully the expression of genetic make up of mother tree. The little variations on these traits are resulted from this reason. The significant differences among populations and among families were found in those characteristics, such as 1000-seed weight, seed length, seed width, and seed thickness as shown in table 11. As to all these dimensions, the values arc always larger in population 1 which is younger in age than that of the other two. The population differences evaluated by cone, seed and seed-wing sizes could partly be attributed to the growth vigorousity. 5. The values of correlation between the characteristics of cone and seed are presented in table 12. As shown, the positive correlations between cone diameter and seed-wing width were calculated in all populations studied. The correlation between seed-wing length and seed length was significantly positive in population 1 and 3 but not in population 2, that is, the r-value is so small as 0.002. in the latter. The correlation between cone length and seed-wing length was highly significant in population 1, but not in population 2. 6. Differences among progenies in growth performances, such as 1-0 and 1-1 seedling height and root collar diameter were highly singificant among populations as well as families within population(Table 13.) 7. The heritability values in narrow sense of population characteristics were estimated on the basis of variance components. The values based on seedling height at each age stage of 1-1 and 1-0 ranged from 0.146 to 0.288 and the values of root collar diameter from 0.060 to 0.130. (Table 14). These heritability values varied according to characteristics and seedling ages. Here what must be stated is that, for calculation of heritability values, the variance values of population was divided by the variance value of environment (error) and family and population. The present authors want to add the heritability values based on family level in the coming report. It might be considered that if the tree age is increased in furture, the heritability value is supposed to be altered or lowered. Examining the heritability values studied previously by many authors, in pine group at age of 7 to 15, the values of height growth ranged from 0.2 to 0.4 in general. The values we obtained are further below than these. 8. The correlation between seedling growth and seed characteristics were examined and the values resulted are shown in table 16. Contrary to our hypothetical premise of positive correlation between 1-0 seedling height and seed weight, non-significance on it was found. However, 1-0 seedling height correlated positively with seed length. And significant correlations between 1-0 and 1-1 seedling height are calculated. 9. The numbers of stomata row calculated separately by abaxial and adaxial side showed highly significant differences among populations, but not in serration density. On serration density, the differences among families within population were highly significant. (Table 17) A fact must be noted is that the correlation between stomata row on abaxial side and adaxial side was highly significant in all populations. Non-significances of correlation coefficient between progenies and parents regarding to stomata row on abaxial side were shown in all populations studied.(Table 18). 10. The contents of chhlorophyll b of the needle were a little more than that of chlorophyll a irrespective of the populations examined. The differences of chlorophyll a, b and a plus b contents were highly significant but not among families within populations as shown in table 20. The contents of chlorophyll a and b are presented by individual trees of each populations in table 21. 11. The occurrence of monoterpene components was examined by gas liquid chromatography (Shimazu, GC-1C type) to evaluate the population difference. There are some papers reporting the chemical geography of pines basing upon monoterpene composition. The number of populations studied here is not enough to state this problem. The kinds of monoterpene observed in needle were ${\alpha}$-pinene, camphene, ${\beta}$-pinene, myrcene, limonene, ${\beta}$-phellandrene and terpinolene plus two unknowns. In analysis of monoterpene composition, the number of sample trees varied with population, I.e., 18 families for population 1, 15 for population 2 and 11 for population3. (Table 22, 23 and 24). The histograms(Fig. 6) of 7 components of monoterpene by population show noticeably higher percentages of ${\alpha}$-pinene irrespective of population and ${\beta}$-phellandrene in the next order. The minor Pinus densiflora monoterpene composition of camphene, myrcene, limonene and terpinolene made up less than 10 percent of the portion in general. The average coefficients of variation of ${\alpha}$-pinene and ${\beta}$-phellandrene were 11 percent. On the contrary to this, the average coefficients of variation of camphene, limonene and terpinolene varied from 20 to 30 percent. And the significant differences between populaiton were observed only in myrcene and ${\beta}$-phellandrene. (Table 25).

  • PDF

Genetic Analysis of Quantitative Characters of Rice (Oryza sativa L.) by Diallel Cross (이면교배(二面交配)에 의한 수도량적(水稻量的) 형질(形質)의 유전분석(遺傳分析)에 관(關)한 연구(硏究))

  • Jo, Jae-seong
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.254-282
    • /
    • 1977
  • To obtain information on the inheritance of the quantitative characters related with the vegetative and reproductive growth of rice, the $F_1$ seeds were obtained in 1974 from the all possible combinations of the diallel crosses among five leading rice varieties : Nongbaek, Tongil, Palgueng, Mangyeong and Gimmaze. The $F_1$'s including reciprocals and parents were grown under the standard cultivation method at Chungnam Provincial Office of Rural Development in 1975. The arrangement of experimental plots was randomized block design with 3 replications and 12 characters were used for the analysis. Analytical procedure for genetic components was followed the Griffing's and Hayman's methods and the results obtained are summarized as follows. 1. In all $F_1$'s of Tongil crosses, the longer duration to heading was due to dominant effect of Tongil and each $F_1$ showed high heterosis in delaying the heading time. It was assumed that non-allelic gene action besides dominant gene effect might be involed in days to heading character. However, in all $F_1$'s from the crosses among parents excluding Tongil the shorter duration was due to dominant gene action and the degree of dominance was partial, since dominance effects were not greater than the additive effect. The non-allelic gene interaction was not significant. Considering the results mentioned above, it was regarded that there were two kinds of Significantly different genetic systems in the days to heading. 2. The rate of heterosis was significantly different depending upon the parents used in the crosses. For instance, the $F_1$'s from Togil cross showed high rate of heterosis in longer culm. Compared to short culm, longer culm was due to recesive gene action and short culm was due to recesive gene action. The dominant gene effect was greater than the additive gene effect in culm length. The narrow sense of heretability was very low and the maternal effects as well as reciprocal effects were significantly recognized. 3. The lenght of the of the uppermost internode of each $F_1$ plant was a little lorger than these of respective parental means or same as those of parents having long internodes, indicating partial dominance in the direction of lengthening the uppermost internodes. The additive gene effects on the uppermost internode was greater than the dominance gene effect. The narrow as well as broad sense of heritabilities for the character of the uppermost internode were very high. There were significant maternal and reciprocal effect in the uppermost internode. 4. The gene action for the flag leaf angle was rather dominance in a way of getting narrower angle. However, in the Palgueng combinations, heterosis of $F_1$ was observed in both narrow and wide angles of the flag leaf. The dominant effects were greater than the additive effects on the flag leaf angle. There were observed also a great deal of non-allelic gene interacticn on the inheritance of the flag leaf angle. 5. Even though the dominant gene action on the length and width of flag leaf was effective in increasing the length or width of the flag leaf, there were found various degrees of hetercsis depending upon the cross combination. Over-dominant gene effect were observed in the inheritance of length of the flag leaf, while additive gene effects was found in the inheritance of the width of the flag leaf. High degree of heretabilities, either narrow or broad sense, were found in both length and width of the flag leaf. No maternal and reciprocal effect were found in both characters. 6. When Tongil was used as one parent in the cross, the length of panicle of $F_1$'s was remarkedly longer than that of parents. In other cross comination, the length of panicle of $F_1$'s was close to the parental mean values. Rather greater dominent gene effect than additive gene effect was observed in the inheritance of panicle length and the dominant gene was effective in increasing the panicle length. 7. The effect of dominant genes was effective in increasing the number of panicles. The degree of heterosis was largely dependent on the cross combination. The effect of dominant gene in the inheritance of panicle number was a little greater than that of additive genes, and the inheritance of panicle number was assumed to be due to complete dominant gene effects. Significantly high maternal and reciprocal effects were found in the character studied. 8. There were minus and plus values of heterosis in the kernel number per panicle depending upon the cross combination. The mean dominant effect was effective in increasing the kernel number per panicle, the degree of dominant effect varied with cross combination. The dominant gene effect and non-allelic gene interaction were found in the inheritance of the kernel number per panicle. 9. Genetic studies were impossible for the maturing ratio, because of environmental effects such as hazards delaying heads. The dominant gene effect was responsible for improving the maturing ratio in all the cross combinations excluding Tongil 10. The heavier 1000 grain weight was due to dominant gene effects. The additive gene effects were greater than the dominant gene effect in the 1000 grain weight, indicating that partial dominance was responsible for increasing the 1000 grain weight. The heritabilites, either narrow or broad sense of, were high for the grain weight and maternal or reciprocal effects were not recognized. 11. When Tongil was used as parent, the straw weight was showing high heterosis in the direction of increasing the weight. But in other crosses, the straw weight of $F_1$'s was lower than those of parental mean values. The direction of dominant gene effect was plus or minus depending upon the cross combinations. The degree of dominance was also depending on the cross combination, and apparently high nonallelic gene interaction was observed.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF