• Title/Summary/Keyword: Experimental Simulation

Search Result 8,377, Processing Time 0.04 seconds

A Numerical Study on Performance of Air-to-Air Plastic Plate Heat Exchanger

  • Chung, Min-Ho;Yoo, Seong-Yeon;Han, Kyu-Hyun;Yoon, Hong-Ik;Kang, Hyoung-Chul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.2
    • /
    • pp.52-60
    • /
    • 2009
  • The purpose of this research is to develop high efficiency plastic plate heat exchangers which can be substituted for conventional aluminum plate heat exchangers. Four simulation models of plastic plate heat exchangers are designed and simulated: that is, flat plate type, turbulent promoter type, corrugate type and dimple type heat exchanger. The flat plate type is designed as the reference model in order to evaluate how much thermal performance increases. The turbulent promoter type is fabricated with cylindrical-type vortex generators and rib-type turbulent promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. Numerical simulation is carried out using the FLUENT code. The flows are assumed as a three-dimensional, incompressible and turbulent model. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type. The tendency of numerical simulation results is in good agreement with that of the experimental results.

The Effect of Debriefing using Reflective Questions and Writing in Simulation Training - Post Operative Care of Abdominal Surgery (시뮬레이션 교육에서 성찰질문과 글쓰기를 이용한 디브리핑의 효과 - 복부수술 후 환자 간호에서)

  • Bang, SulYeong;Eun, Young
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.23 no.4
    • /
    • pp.463-473
    • /
    • 2017
  • Purpose: The purposes of study was to evaluate the effect of debriefing using reflection questions and writing on the critical thinking disposition, self-efficacy, and clinical judgement ability in simulation of post-operative care of abdominal surgery. Methods: The research method was a nonequivalent control group no-synchronized design. The study period was from August 22 to 30, 2016. The subjects were comprised of 34 people in the experimental group and 36 in the control group. In a simulation session for post-operative care of abdominal surgery, the treatment of the experimental group was to debrief for 30 minutes using Lasater's reflection questions and writing. For the control group, a typical debriefing was conducted in the same environment. Results: Critical thinking disposition, self-efficacy, and clinical judgement were significantly higher in the experimental group than the control group. Conclusion: To enhance the critical thinking disposition, self-efficacy, and clinical judgement of nursing students in simulation, it is recommended to debrief using reflection questions and writing.

Bridge Simulation System with Soil-Foundation-Structure Interaction (지반 구조 상호작용을 고려한 교량 시뮬레이션 시스템)

  • Kim, Ik-Hwan;Han, Bong-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.168-178
    • /
    • 2008
  • The hybrid simulation test method is a versatile technique for evaluating the seismic performance of structures by seamlessly integrating both physical and numerical simulations of substructures into a single test mode. In this paper, a software framework that integrates computational and experimental simulation has been developed to simulate and test a bridge structural system under earthquake loading. Using hybrid simulation, the seismic response of complex bridge structural systems partitioned into multiple large-scale experimental and computational substructures at networked distributed experimental and computational facilities can be evaluated. In this paper, the examples of application are presented in terms of a bridge model with soil-foundation-structure interaction.

Cyanide removal simulation from wastewater in the presence of titanium dioxide nanoparticles

  • Safavi, Banafshe;Asadollahfardi, Gholamreza;Darban, Ahmad khodadadi
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • One of the methods of removing cyanide from wastewater is surface adsorption. We simulated the removal of cyanide from a synthetic wastewater in the presence of Titanium dioxide nano-particles absorbent uses VISUAL MINTEQ 3.1 software. Our aim was to determine the factors affecting the adsorption of cyanide from synthetic wastewater applying simulation. Synthetic wastewater with a concentration of 100 mg/l of potassium cyanide was used for simulation. The amount of titanium dioxide was 1 g/l under the temperature of $25^{\circ}C$. The simulation was performed using an adsorption model of Freundlich and constant capacitance model. The results of simulation indicated that three factors including pH, nanoparticles of titanium dioxide and the primary concentration of cyanide affect the adsorption level of cyanide. The simulation and experimental results had a good agreement. Also by increasing the pH level of adsorption increases 11 units and then almost did not change. An increase in cyanide concentration, the adsorption level was decreased. In simulation process, rising the concentrations of titanium dioxide nanoparticles to 1 g/l, the rate of adsorption was increased and afterward no any change was observed. In all cases, the coefficient of determination between the experimental data and simulation data was above 0.9.

Importance Sampling Embedded Experimental Frame Design for Efficient Monte Carlo Simulation (효율적인 몬테 칼로 시뮬레이션을 위한 중요 샘플링 기법이 내장된 실험 틀 설계)

  • Seo, Kyung-Min;Song, Hae-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.4
    • /
    • pp.53-63
    • /
    • 2013
  • This paper presents an importance sampling(IS) embedded experimental frame(EF) design for efficient Monte Carlo (MC) simulation. To achieve IS principles, the proposed EF contains two embedded sub-models, which are classified into Importance Sampler(IS) and Bias Compensator(BC) models. The IS and BC models stand between the existing system model and EF, which leads to enhancement of model reusability. Furthermore, the proposed EF enables to achieve fast stochastic simulation as compared with the crude MC technique. From the abstract two case studies with the utilization of the proposed EF, we can gain interesting experimental results regarding remarkable enhancement of simulation performance. Finally, we expect that this work will serve various content areas for enhancing simulation performance, and besides, it will be utilized as a tool to understand and analyze social phenomena.

Development and evaluation of a pediatric nursing competency-building program for nursing students in South Korea: a quasi-experimental study

  • Koo, Hyun Young;Lee, Bo Ryeong
    • Child Health Nursing Research
    • /
    • v.28 no.3
    • /
    • pp.167-175
    • /
    • 2022
  • Purpose: The present study aimed to develop and examine the effectiveness of a pediatric nursing competency-building program for nursing students. Methods: This was a quasi-experimental study with a nonequivalent control group pretest-posttest design conducted between October and December 2021. The participants included 40 nursing students (20 each in the experimental and control groups) at a university in a South Korean city. The pediatric nursing competency-building program integrated problem-based learning and simulation into clinical field practice. The experimental group participated in the program, while the control group did not. Data were analyzed using the 𝑥2 test, the independent t-test, and repeated-measures analysis of variance. Results: Pediatric nursing competency and clinical performance showed a greater increase in the experimental group than in the control group. However, the change in problem-solving ability in the experimental group was not significantly different from that in the control group. Conclusion: The pediatric nursing competency-building program effectively improved students' pediatric nursing competency and clinical performance.

Performance Evaluation of a Parallel DEVS Simulation Environment of P-DEVSIM ++ (병렬 DEVS 시뮬레이션 환경(P-DEVSIM ++) 성능 평가)

  • 성영락
    • Journal of the Korea Society for Simulation
    • /
    • v.2 no.1
    • /
    • pp.31-44
    • /
    • 1993
  • Zeigler's DEVS(Discrete Event Systems Specification) formalism supports formal specification of discrete event systems in a hierarchical , modular manner. Associated are hierarchical, distributed simulation algorithms, called abstract simulators, which interpret dynamics of DEVS models. This paper deals with performance evaluation of P-DEVSIM ++, a parallel simulation environment which implements the DEVS formalism and associated simulation algorithms in a parallel environment. Performance simulator has been developed and used to experiment models of parallel simulation executions in different conditions. The experimental result shows that simulation time depends on both the number of processors in the parallel system and the communication overheads among such processors.

  • PDF

A Statistical Estimation of The Universal Constants Using A Simulation Predictor

  • Park, Jeong-Soo-
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.6-6
    • /
    • 1992
  • This work deals with nonlinear least squares method for estimating unknown universial constants C in a computer simulation code real experimental data(or database) and computer simulation data. The best linear unbiased predictor based on a spatial statistical model is fitted from the computer simulation data. Then nonlinear least squares estimation method is applied to the real data using the fitted prediction model(or simulation predictor) as if it were the true simulation model. An application to the computational nuclear fusion device is presented.

  • PDF

Simulation and Experiment of Injection Molding Process for Superalloy Feedstock

  • Jung, Im Doo;Kim, Youngmoo;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • Powder injection molding is an important manufacturing technology to mass produce superalloy components with complex shape. Injection molding step is particularly important for realizing a desired shape, which requires much time and efforts finding the optimum process condition. Therefore computer aided engineering can be very useful to find proper injection molding conditions. In this study, we have conducted a finite element method based simulation for the spiral mold test of superalloy feedstock and compared the results with experimental ones. Sensitivity analysis with both of simulation and experiment reveals that the melt temperature of superalloy feedstock is the most important factor for the full filling of mold cavity. The FEM based simulation matches well the experimental results. This study contributes to the optimization of superalloy powder injection molding process.

Analysis of decimation techniques to improve computational efficiency of a frequency-domain evaluation approach for real-time hybrid simulation

  • Guo, Tong;Xu, Weijie;Chen, Cheng
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1197-1220
    • /
    • 2014
  • Accurate actuator tracking is critical to achieve reliable real-time hybrid simulation results for earthquake engineering research. The frequency-domain evaluation approach provides an innovative way for more quantitative post-simulation evaluation of actuator tracking errors compared with existing time domain based techniques. Utilizing the Fast Fourier Transform the approach analyzes the actuator error in terms of amplitude and phrase errors. Existing application of the approach requires using the complete length of the experimental data. To improve the computational efficiency, two techniques including data decimation and frequency decimation are analyzed to reduce the amount of data involved in the frequency-domain evaluation. The presented study aims to enhance the computational efficiency of the approach in order to utilize it for future on-line actuator tracking evaluation. Both computational simulation and laboratory experimental results are analyzed and recommendations on the two decimation factors are provided based on the findings from this study.