• Title/Summary/Keyword: Experimental Dynamic Modification

Search Result 75, Processing Time 0.022 seconds

Dynamic deformation behavior of Ethylene Copolymer under high strain rate compressive loading (SHPB 기법을 사용한 고변형률 속도 하중하에서의 합성수지의 동적 변형 거동)

  • Lee, Jong-Won;Lee, Ouk-Sub;Hwang, Si-Won;Kim, S-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.371-376
    • /
    • 2004
  • It is well known that a specific experimental method such as the Split Hopkinson Pressure Bar (SHPB) technique is the simplest experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of $10^3/s{\sim}10^4/s$. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using the SHPB technique.

  • PDF

Dynamic Deformation Behavior of Rubber and Ethylene Copolymer Under High Strain Rate Compressive Loading (SHPB기법을 사용한 고무와 합성수지의 고변형률 속도 하중 하에서의 동적 변형 거동)

  • 이억섭;이종원;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.122-130
    • /
    • 2004
  • It is well known that a specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique is a best experimental technique to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 10$^3$/s∼10$^4$/s. This type of experimental procedure has been widely used with proper modification on the test setups to determine the varying dynamic response of materials for the dynamic boundary conditions such as tensile and fracture as well. In this paper, dynamic compressive deformation behaviors of a rubber and an Ethylene Copolymer materials widely used for the isolation of vibration from varying structures under dynamic loading are estimated using a Split Hopkinson Pressure Bar technique.

Grouping effect on the seismic response of cabinet facility considering primary-secondary structure interaction

  • Salman, Kashif;Tran, Thanh-Tuan;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1318-1326
    • /
    • 2020
  • Structural modification in the electrical cabinet is investigated by a proposed procedure that comprises of an experimental, analytical and numerical solution. This research emphasizes the linear dynamic analysis of the cabinet that is studied under the seismic excitation to demonstrate the real behavior of the cabinets in NPP. To this end, an actual electric cabinet is experimentally tested using an impact hammer test which reveals the fundamental parameters of the cabinet. The Frequency-domain decomposition (FDD) method is used to extract the dynamic properties of the cabinet from the experiment which is then used for numerical modeling. To validate the dynamic properties of the cabinet an analytical solution is suggested. The calibrated model is analyzed under the floor response obtained from the Connecticut nuclear power plant structure excited by Tabas 1978 (Mw 7.4) earthquake. Eventually, the grouping effect of the cabinets is proposed which represents the influence on the dynamic modification. This grouping of the cabinets is described more sophisticatedly by the theoretical understating, which results in a significant change in the seismic response. Considering the grouping effects will be helpful in the assessment of the real seismic behavior, design, and performance of cabinets.

Automatic Dynamic Range Improvement Method using Histogram Modification and K-means Clustering (히스토그램 변형 및 K-means 분류 기반 동적 범위 개선 기법)

  • Cha, Su-Ram;Kim, Jeong-Tae;Kim, Min-Seok
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1047-1057
    • /
    • 2011
  • In this paper, we propose a novel tone mapping method that implements histogram modification framework on two local regions that are classified using K-means clustering algorithm. In addition, we propose automatic parameter tuning method for histogram modification. The proposed method enhances local details better than the global histogram method. Moreover, the proposed method is fully automatic in the sense that it does not require intervention from human to tune parameters that are involved for computing tone mapping functions. In simulations and experimental studies, the proposed method showed better performance than existing histogram modification method.

Study on the Noise Reduction in the Rotary Compressor Using BLDC Motor (BLDC 모터를 적용한 로터리 컴프레서 소음 저감에 관한 연구)

  • Kim, Jin-Soo;Lim, Kyung-Nae;Ku, Se-Jin;Lee, Jang-Woo;Jeon, Si-Moon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.920-929
    • /
    • 2008
  • The main noise and vibration source of the BLDC rotary compressor for air conditioner was analyzed by using the measurement of noise and vibration, noise contour, and experimental modal analysis. The source is presumed to the mechanical resonance excited by the electromagnetic attractive force of the BLDC motor. To reduce the excessive noise of the BLDC rotary compressor due to the mechanical resonance, air-gap enlargement and structural dynamic modification were applied in this paper. Its validations were conducted by the analysis of the electromagnetic attractive force which is generated by the BLDC motor and by the measurement of noise and vibration of the BLDC rotary compressor. By enlarging the length of air-gap and conducting the structural dynamic modification, the noise and vibration in the compressor was significantly improved by 4.5 dB(A) and 56 percent, respectively.

Wind-induced Aerodynamic Instability of Super-tall Buildings with Various Cross-sectional Shapes

  • Kim, Wonsul;Yoshida, Akihito;Tamura, Yukio
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • The effectiveness of aerodynamic modification to reduce wind loadings has been widely reported. However, most of previous studies have been investigated dynamic forces and pressure distributions on tall buildings with various unconventional configurations. This study was investigated dynamic characteristics and aerodynamic instability of super-tall buildings with unconventional configurations through extensive aeroelastic model experiments. Seventeen types of supertall building models were considered such as basic and corner modification with corner cut, chamfered, oblique opening, tapered, inversely tapered, bulged, helical with twist angles of $90^{\circ}$, $180^{\circ}$, $270^{\circ}$, $360^{\circ}$ and composite with $360^{\circ}$ helical & corner cut, 4-tapered & $360^{\circ}$ helical & corner cut, setback & corner cut, setback & $45^{\circ}$ rotate. As a result, aerodynamic characteristics of helical models with single modification are superior to those of other models with single modification. However, effect of twist angle for helical model is negligible. Further, the 4-tapered & $360^{\circ}$helical & corner cut model is most effective in reducing the along- and across-wind fluctuating displacement responses in all of experimental models.

Structural Dynamics Modification of Damped Systems via Sensitivity Analysis (민감도 해석에 의한 감쇠계의 구조변경)

  • 차현주;도원주;이시복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.224-230
    • /
    • 1996
  • In the mechanical systems with large damping, the conventional SDM method developed for no damping systems will lead to an error solution. Here, we introduce a SDM method based on the experimental modal model for large damping systems. The sensitivities of natural frequencies and mode shapes with respect to mass, damping, and stiffness coefficients of structures are used to calculate the position and quantity of modification, and predict the new dynamic characteristics. Through numerical simulation and experiment, the effectiveness of the proposed method is tested.

  • PDF

A study on the Experimental Evaluation for the Cam Profile CNC Grinding Machine using Vibration Signals (진동 신호를 이용한 캠 프로파일 CNC 연삭기의 실험적 평가에 관한 연구)

  • Lee Choon Man;Lim Sang Heon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.288-293
    • /
    • 2005
  • A earn profile grinding machine is a mandatory machine tool for manufacture of high precision contoured cam. Experimental evaluation of modal analysis is an effective tool to investigate dynamic behavior of a machine. This paper presents the measurement system and experimental investigation on the modal analysis of a grinding machine. The weak part of the machine is found by the experimental evaluation. The results provide structure modification data for good dynamic behaviors. And safety of the machine was confirmed by the modal analysis of modified machine design. Finally, the cam profile grinding machine was successfully developed.

  • PDF

A Study on the Improvement of Radiated Noise in SCR Muffler of Commercial Vehicle (상용차용 SCR 머플러의 방사소음 개선에 관한 연구)

  • Lee, Dong-Won;Kim, Wan-Su;Bae, Chul-Yong;Kim, Chan-Jung;Kwon, Sung-Jin;Lee, Bong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.816-822
    • /
    • 2008
  • This study presents the design modification for SCR muffler of a commercial vehicle. Its main objective is the reduction of radiated noise at SCR muffler. For this study, the research of five steps were achieved by experimental and CAE analysis. First step is the measurement of radiated noise using impact-acoustic test. Second step is the source identification using experimental modal analysis. The cause of radiated noise source is confirmed by the resonance of end plates at SCR muffler. Third step confirms the possibility of resonance avoidance using SDM analysis applied the mass control. Fourth step is the suggestion of design modification which is the change of mode shape by CAE analysis. Last step is the verification of design modification using SYSNOISE analysis. Finally, the prototype product applied the countermeasure of resonance evasion was manufactured and the reduction of radiated noise at SCR muffler was confirmed by pass-by noise test.

A study on the Evaluation for the Static and Dynamic stiffness of a Machining Center (머시닝 센터의 정${\cdot}$동강성 평가에 관한 연구)

  • Lee Choon Man;Park Dong Gun;Lim Sang Heon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.294-299
    • /
    • 2005
  • A machining center is a complex dynamic system whose behavior influences the machining stability and machined surface quality. This paper focused on establishment of a measurement system and experimental study on static, dynamic, and modal analysis of a machining center. The dynamic stiffness result by the analysis showed the weak part of the machining center. The results provided structure modification data for getting better dynamic behaviors.

  • PDF