• Title/Summary/Keyword: Experiment-Model-Design

Search Result 1,611, Processing Time 0.034 seconds

The Sensitivity Analysis of Derailment in Suspension Elements of Rail Vehicle (철도차량 현수장치의 탈선에 대한 민감도 연구)

  • 심태웅;박찬경;김기환
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.566-573
    • /
    • 1999
  • This paper is the result of sensitivity analysis of derailment with respect to the selected suspension elements for the rail vehicle. Derailment phenominon has been explained by the derailment quotient. Thus, the sensitivity of derailment is suggested by a response surface model(RSM) which is a functional relationship between derailment quotient and characteristics of suspension elements. To summarize generation of RSM, we can introduce the procedure of sensitivity analysis as follows. First, to form a RSM, a experiment is performed by a dynamic analysis code, VAMPIRE according to a kind of the design of experiments(DOE). Second, RSM is constructed to a 1$\^$st/ order polynomial and then main effect fators are screened through the stepwise regression. Finally, we can see the sensitivity level through the RSM which only consists of the main effect factors and is expressed by the liner, interaction and quadratic effect terms.

  • PDF

Towards a reduced order model of battery systems: Approximation of the cooling plate

  • Szardenings, Anna;Hoefer, Nathalie;Fassbender, Heike
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.43-54
    • /
    • 2022
  • In order to analyse the thermal performance of battery systems in electric vehicles complex simulation models with high computational cost are necessary. Using reduced order methods, real-time applicable model can be developed and used for on-board monitoring. In this work a data driven model of the cooling plate as part of the battery system is built and derived from a computational fluid dynamics (CFD) model. The aim of this paper is to create a meta model of the cooling plate that estimates the temperature at the boundary for different heat flow rates, mass flows and inlet temperatures of the cooling fluid. In order to do so, the cooling plate is simulated in a CFD software (ANSYS Fluent ®). A data driven model is built using the design of experiment (DOE) and various approximation methods in Optimus ®. The model can later be combined with a reduced model of the thermal battery system. The assumption and simplification introduced in this paper enable an accurate representation of the cooling plate with a real-time applicable model.

Networked Control System Using RTT Measurement over USN (RTT 측정을 이용하는 USN 기반 Networked Control System)

  • Yi, Hyun-Chul;Kim, Yu-Jong;Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1040-1044
    • /
    • 2012
  • We design a NCS (Networked Control System) where the communication between sensors and controllers takes place over a USN (Ubiquitous Sensor Network). In order to measure time delays between sensors and controllers in real time, we design an algorithm to measure RTT (Round Trip Time) between USN nodes, and implement it into TinyOS of USN. By using the measured time delays, we construct the Smith predictor to compensate the time delays between sensors and controllers in real-time. For the real time experiment, we simulate the dynamic plant model, controller, and USN interface using Real-Time Windows Target provided in MATLAB. The USN interface in the Simulink model consists of serial ports, which connect the plant output and controller with USN nodes. The experiment results show that the time delays between sensors and controllers are precisely measured in real time; the Smith predictor appropriately compensates the time delays; and the stability is achieved in the closed-loop of the NCS.

Modeling and Control Characteristics of Isolated Inverse-SEPIC (절연형 Inverse-SEPIC의 모델링 및 제어 특성)

  • Park, Han-Eol;Kim, Eun-Seok;Kim, Soo-Seok;Song, Joong-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • A dynamic model for II-SEPIC(Isolated Inverse-SEPIC) is developed based on the state-space averaging method and its control characteristics are investigated in this paper. Equations for circuit design of II-SEPIC are derived through steady state analysis and the resulted circuit parameters are used in the consequent simulation and experiment works. A structure of control system is devised to obtain better control performance. In order to verify validity and effectiveness of the design equations and dynamic model derived, dynamic control responses of II-SEPIC system against line and load variation are illustrated in both simulation and experiment.

A design and simulation of a hydraulic control valve in transmission (트랜스 미션에 유압식 콘트롤밸브의 설계와 시뮬레이션)

  • 곽희성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.167-174
    • /
    • 1997
  • In this paper, the mathematical model of the hydraulic control valve is formulated, that is, this dynamic modeling which includes the motion equations and continuity equations can analyze the dynamic characteristics of the hydraulic control valve. The control valve for the transmission has the Over Speed Protection to protect a hydraulic travel motor. Therefore, this simulation shows the over speed protection and researches the main design parameters. The results of the computer simulation were assured through the experiment. From the comparison between both results, it is shown that this simulation program is useful and effective.

  • PDF

An Experimental Study on the Thermal Efficiency of the Ondol House Beating System (온돌의 열효율에 관한 실험적 연구)

  • Bae soonhoon;Kang Shin-Hyoung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.4 no.3
    • /
    • pp.183-190
    • /
    • 1975
  • Most Korean houses are heated by the Ondol heating system. There has been, however, no reasonable design procedure availabe yet for the system. The conventional design should be improved to have auniform floor surface. temperature distribution and to have a high thermal efficiency. Thermal efficiencies of the ondol were defined and the method of experimentation was studied. An experiment, using a life-size model which was well insulated, was performed to observe the variation in thermal efficiency as the length of fuel burning time was varied.

  • PDF

Design of an Adaptive Controller for Steady Voltage Characteristics of the Fuel Cell (연료전지의 정전압 특성을 위한 적응제어기 설계)

  • Hyun, Keun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.51-54
    • /
    • 2007
  • In this paper, the dynamic models of a SOFC are rearranged. It consists of electrochemical model, thermal model, voltage equation and several loss equations. Experiment results of the real SOFC system are shown to evaluate the steady voltage characteristics. Control problems on tracking steady voltage by air flow is discussed and an adaptive controller is designed to withstand to the variation of stack current. Simulation is done to prove the solution of control algorithms.

  • PDF

PID Control structure for Model following control (모델 추종 제어를 위한 PID 제어기법)

  • 이창호;김종진;하홍곤
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.165-168
    • /
    • 2003
  • In this paper the design of the model following control system is proposed using the PID control structure. The games of the PID controller in the proposed control system are automatically adjusted by back-propagation algorithm of the neural network. And applying to the position control system, it's performance is verified through the results of computer experiment.

  • PDF

User Interface Experiment Model Design for Touch-Screen Based on Navigation System (터치스크린 기반 항해 시스템을 위한 사용자 인터페이스 실험 모델 설계)

  • Jeon, Hyun-Min;An, Jae-Yong;Oh, Seung-Yup;Park, Peom
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.11
    • /
    • pp.503-510
    • /
    • 2014
  • With the development of electronic communication technology, the ship's navigational equipment is being digitized, and it has being studied touch-screen-based navigation user interface. However, due to the influence of environmental factors such as waves, it has a potential problem hazardous marine accident occurs due to incorrect operation, the systematic research in consideration of this be done do not. In this paper, we provide a user interface experimental model to verify the stability that takes into account the external environment of the touch-screen input on. Further, we simulated to verify that the interface of the touch screen, the effect of applying the input delay time and the size of the button is obtained through the experimental model proposed. It will be able to greatly contribute to studies of the interface robust touch screen user errors that can be analyzed by the experimental model is proposed to improve the ship, the overall system stability.