• Title/Summary/Keyword: Expected total cost

Search Result 428, Processing Time 0.029 seconds

Generator Scheduling Considering System's Reliability and Demand Response (시스템의 신뢰도와 수요 반응을 고려한 발전 운영)

  • Kwag, Hyung-Geun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.929-935
    • /
    • 2011
  • Customers hardly change to electric prices in old days because electricity is essential commodity, while demand changes with price after deregulation. It's explained by price-based demand response with demand-elasticity matrix. Also all of the customers have had identical demand-price elasticity matrix till now. But in a practical power system, various customers are present with taking a variety of demand-price elasticity. Therefore this paper proposes demand-price sensitivity to represent different demand-price elasticity. Also as proposing demand-reliability sensitivity, it is modeling various customers' characteristics to reliability. And then this paper calculates total expected interruption cost of customer from the customer interruption cost and the demand-reliability sensitivity. A total expected interruption cost of system is shown as opportunity cost of a generation cost.

Optimal Burn-In under Warranty

  • Kim, Kui-Nam J.;Park, Chi-Yeon;Hong, Chan-Geui
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.147-155
    • /
    • 1999
  • This paper discusses an optimal burn-in procedure to minimize total costs based on the assumption that the failure rate pattern follows a bimodal mixed Weibull distribution. The procedure will consider warranty period as a factor of the total expected burn-in cost. A cost model is formulated to find the optimal burn-in time that minimizes the expected burn-in cost. Conditional reliability for warranty period will be discussed. An illustrative example is included to show how to use the cost model in practice.

  • PDF

Life Cycle Cost Analysis Models for Bridge Structures using Artificial Intelligence Technologies (인공지능기술을 이용한 교량구조물의 생애주기비용분석 모델)

  • Ahn, Young-Ki;Im, Jung-Soon;Lee, Cheung-Bin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.4
    • /
    • pp.189-199
    • /
    • 2002
  • This study is intended to propose a systematic procedure for the development of the conditional assessment based on the safety of structures and the cost effective performance criteria for designing and upgrading of bridge structures. As a result, a set of cost function models for a life cycle cost analysis of bridge structures is proposed and thus the expected total life cycle costs (ETLCC) including initial (design, testing and construction) costs and direct/indirect damage costs considering repair and replacement costs, human losses and property damage costs, road user costs, and indirect regional economic losses costs. Also, the optimum safety indices are presented based on the expected total cost minimization function using only three parameters of the failure cost to the initial cost (${\tau}$), the extent of increased initial cost by improvement of safety (${\nu}$) and the order of an initial cost function (n). Through the enough numerical invetigations, we can positively conclude that the proposed optimum design procedure for bridge structures based on the ETLCC will lead to more rational, economical and safer design.

Economic Design of A Zero-Failure Reliability Demonstration Test Considering Capacity Limitation of Test Equipment (시험 장비의 용량제한을 고려한 무고장 신뢰성 시험의 경제적 설계)

  • Han, Sook Hyun;Yun, Won Young;Seo, Sun Keun
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.341-358
    • /
    • 2021
  • Purpose: After product development, a Reliability Demonstration Test(RDT) is performed to confirm that the target life has been achieved. In the RDT, there are cases where the test equipment cannot accommodate all samples. Therefore, this study considers a test method to most economically demonstrate the target life of the product at a certain confidence level when the sample size is larger than the capacity of the test equipment. Methods: If the sample size is larger than the capacity of the test equipment, test equipments may be added or the test time of individual samples may be increased. So the test method is designed to cover this situation with limited capacity. A zero-failure test method is applied as a test method to RDT. To minimize the cost, the test cost is defined and the cost function is obtained. Finally, we obtain the optimal test plan. Results: A zero-failure test method is designed when the sample size is larger than the capacity of the test equipment, and the expected total cost is derived. In addition, the process of calculating the appropriate sample size, test time, and number of test equipment is illustrated through an example, and the effects of model parameters to the optimal solutions are investigated numerically. Conclusion: In this paper, we study a zero-failure RDT with test equipment that has limited capacity. The expected total cost is derived and the optimal sample size, test time, and number of test equipment are determined to minimize the expected total cost. We also studied numerical examples and for further studies, we can relax some restrictions in the test model and optimize the test method.

Maintenance Limit Renewal Policy for Inferiority System based on Opportunity Cost (기회비용을 고려한 열화시스템의 보전한계갱신정책)

  • 박상민;김연수
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.32
    • /
    • pp.233-242
    • /
    • 1994
  • This study deals with the derivative adverse minimum for inferiority system depends on continuose operating under infinite planning horizon. This planning will be accomplished by maintenance limit renewal policy in consideration of opportunity cost which affects system by failure during operation periods and expected cost under nomal operation states. By the results, we will be expected incresing total efficiency for the system by optimal renewal policy.

  • PDF

Extended warranty policy when minimal repair cost is a function of failure time (최소수리비용이 고장시간의 함수일 때 연장된 보증 정책)

  • Jung, Ki Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1195-1202
    • /
    • 2012
  • In this paper, we determine the expected total cost from the user's perspective for the replacement model with the extended warranty when minimal repair cost is a function of failure time. To do so, we define the extended warranty and assume the replacement model following the expiration of extended warranty from the user's perspective. Especially, we propose the criterion to buy the extended warranty and the numerical examples are presented to illustrate the purpose when the failure time of the system has a Weibull distribution.

Preventive maintenance model with extended warranty (연장된 보증을 갖는 예방보전모형)

  • Jung, Ki Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.773-781
    • /
    • 2013
  • Recently, an extended warranty of the system following the expiration of the basic warranty is becoming increasingly popular to the user. In this respect, we suggest a preventive maintenance model following the expiration of extended warranty with minimal repair warranty from the user's point of view in this paper. Under basic warranty and extended warranty, the failed system is minimally repaired by the manufacturer at no cost to the user. For the preventive maintenance model, we derive the expressions for the expected cycle length, the expected total cost and the expected cost rate per unit time. Also, we determine the optimal preventive maintenance period and the optimal preventive maintenance number by minimizing the expected cost rate per unit time. Finally, the numerical examples are presented to illustrate the purpose when the failure time of the system has a Weibull distribution.

Safer Zone Analysis for Multiple Investment Alternatives on the Total-Cost Unit-Cost Domain

  • Kono, Hirokazu
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.1
    • /
    • pp.11-17
    • /
    • 2012
  • Along with the recent trend toward increasing variety and shorter life of products in the market, evaluation of risk for economic investment alternatives is of practical importance in manufacturing companies. This paper assumes that each alternative is composed of demand volume and unit sales price as income factors, and unit variable cost and fixed cost as expense factors. The paper assumes that these four factors move worse from the originally expected values, toward the direction of decreasing profit. Values of these four factors are also assumed to fluctuate from year to year over the entire multi-period. By applying the analysis of the breakeven points to each of the four factors, safer area against these changes is represented on the two dimensional domain called normalized total-cost unit-cost domain. A practical numerical example is analyzed to verify the validity of the proposed method.

Selection of target for the minimum expected loss in plating processes (도금공정에서 최소기대손실을 위한 목표치의 설정)

  • Park, Chang-soon;Kim, Jung-Jun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1051-1060
    • /
    • 2010
  • In the plating process of the IC chips for the printed circuit board manufacturing, specification limits for the plating thickness are usually given but its target is not specified in most cases. When the target is not specified, the center point of the specification limits is used instead. When the process capability is large, however, the use of the center point for the target is not the best choice in the context of the total cost. In this paper, the total cost is defined in terms of the production cost and the loss function, and then the optimal choice for target is studied in order to minimize the expected loss. As a consequence, the optimal choice of the target reduces the expected loss significantly, while reducing the process capability slightly.

Optimum Life-Cycle Cost Design of Steel Box Girder Bridges Using Collaborative Optimization (협동 최적화 방법을 이용한 강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.201-210
    • /
    • 2001
  • In this study, large-scale distributed design approach for a life cycle cost (LCC) optimization of steel box girder bridges was implemented. A collaborative optimization approach is one of the multidisciplinary design optimization approaches and it has been proven to be best suited for distributed design environment. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost maintenance cost expected retrofit costs for strength, deflection and crack. To discuss the possibility of the application for the collaborative optimization of steel box girder bridges, the results of this algorithm are compared with those of single level algorithm. From the numerical investigations, the collaborative optimization approach proposed in this study may be expected to be new concepts and design methodologies associated with the LCC approach.

  • PDF