결측자료(missing data), 절단분포(truncated distribution), 중도절단자료(censored data) 등 불완전한 자료(incomplete data)하의 추론문제(incomplete problems)는 통계학에서 자주 발생되는 현상이다. 이런 문제의 해결방법으로 Expectation Maximization, Monte Carlo Expectation Maximization, Stochastic Expectation Maximization 알고리즘 등을 이용하는 방법이 있지만, 정형화된 분포의 가정이 필요하다는 단점을 가지고 있다. 본 연구에서는 정형화된 분포의 가정이 없는 경우에 사용할 수 있는 Metropolis-Hastings Expectation Maximization(MHEM) 알고리즘을 제안하고자 한다. MHEM 알고리즘의 효율성은 중도절단자료(censored data)를 이용한 모의실험과 KOSPI 200 수익률의 실증자료분석를 통해 알수 있었다.
본 논문은 멀티레벨을 가지는 홀로그래픽 저장 장치에서 EM (Expectation-maximization) 알고리즘을 이용한 적응 문턱전압검출기를 제안한다. 멀티레벨을 이용한 홀로그래픽 저장 장치의 경우 DC 오프셋의 정도에 따라 비적응 문턱전압검출기의 성능에 매우 심각한 영향을 미친다. EM 방법은 채널을 통과한 데이터를 이용해 Expectation step과 maximization step을 반복하면서 평균과 분산을 추정하는 방법이다. DC 오프셋이 있는 상황에서 제안된 방법을 적용하여 문턱값을 찾아내서 검출한 결과 일정한 한도 내의 DC 오프셋의 경우는 DC 오프셋이 없는 경우와 동일한 성능을 보였다.
Barembruch, Steffen;Scaglione, Anna;Moulines, Eric
Journal of Communications and Networks
/
제12권4호
/
pp.317-329
/
2010
In recent years, many sparse estimation methods, also known as compressed sensing, have been developed. However, most of these methods presume that the measurement matrix is completely known. We develop a new blind maximum likelihood method-the expectation-sparse-maximization (ESpaM) algorithm-for models where the measurement matrix is the product of one unknown and one known matrix. This method is a variant of the expectation-maximization algorithm to deal with the resulting problem that the maximization step is no longer unique. The ESpaM algorithm is justified theoretically. We present as well numerical results for two concrete examples of blind channel identification in digital communications, a doubly-selective channel model and linear time invariant sparse channel model.
대용량의 데이터 전송을 위해 최근에 많이 사용되고 있는 OFDM 시스템은 다중경로페이딩에는 유리하지만 시간 선택성 페이딩에서는 자유롭지 못하고 이를 위해 채널추정이 필요하게 된다. 이를 위해 본 논문에서는 기존의 EM 알고리즘의 성능을 향상시키기 위해 LPC 알고리즘을 접목시킨 EM-LPC 알고리즘을 제안했다. 이 알고리즘은 기존의 EM 알고리즘의 M-Step 다음에 LPC 알고리즘을 사용하여 미리 다음 pilot 데이터를 추정할 수 있게된다. 또한 interpolation을 통한 데이터 수정도 가능하게 된다. 살펴본 결과 EM-LPC 알고리즘이 기존의 LS 알고리즘과 EM 알고리즘보다 좋은 성능을 내는 것을 볼 수 있었다. 또한 EM 루프의 반복도 역시 줄어드는 것을 볼 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권8호
/
pp.3498-3511
/
2016
We investigate the channel state information (CSI) in multi-input multi-output (MIMO) cooperative networks that employ the amplify-and-forward transmission scheme. Least squares and expectation conditional maximization have been proposed in the system. However, neither of these two approaches takes advantage of channel sparsity, and they cause estimation performance loss. Unlike linear channel estimation methods, several compressed channel estimation methods are proposed in this study to exploit the sparsity of the MIMO cooperative channels based on the theory of compressed sensing. First, the channel estimation problem is formulated as a compressed sensing problem by using sparse decomposition theory. Second, the lower bound is derived for the estimation, and the MIMO relay channel is reconstructed via compressive sampling matching pursuit algorithms. Finally, based on this model, we propose a novel algorithm so called sparsity adaptive expectation maximization (SAEM) by using Kalman filter and expectation maximization algorithm so that it can exploit channel sparsity alternatively and also track the true support set of time-varying channel. Kalman filter is used to provide soft information of transmitted signals to the EM-based algorithm. Various numerical simulation results indicate that the proposed sparse channel estimation technique outperforms the previous estimation schemes.
이 논문은 카메라가 연속적으로 움직일 때 그 카메라로부터 얻은 동영상을 분석하여 카메라의 움직임에 대한 정보와 영상내의 구조물의 삼차원 정보를 계산하는 알고리듬에 대한 것이다. 일반적으로 불 연속한 위치에서 얻은 영상의 집합으로부터 삼차원정보 및 카메라 정보를 얻는 경우에는 카메라의 움직임에 대한 제약조건이 필요 없지만, 비디오 카메라를 이용하여 동영상을 취득하는 경우에는 항상 카메라의 움직임이 부드러워야 한다는 조건이 따라 붙는다. 따라서, 이 논문에서는 ‘부드러운 움직임을 가지는 카메라’라는 제약조건을 포함하는 카메라 및 삼차원정보의 최적화 과정에 대하여 연구하였다. 목적하는 바를 얻기 위하여 Expectation-Maximization 방법을 사용하여 카메라의 움직임에 대한 모델 파라메터를 동시에 추정하였는데, 이를 위하여 Extended Kalman Filter 와 Extended Kalman Smoother를 적용하였다. 이 연구는 길이가 긴 비디오 영상열의 비젼 해석에 기본이 된다. 실제 영상을 이용하여 실험한 결과를 보였다.
본 논문에서는 OFDM(Orthogonal Frequency Division Multiplexing) 기반 셀룰라 시스템에서 채널추정 성능을 향상시키기 위한 DEM(Decision-directed Expectation Maximization) 알고리듬을 제안한다. DEM 알고리듬은 다중안테나를 사용하는 단말이 셀 경계지역에 위치하는 경우 데이터 신호를 이용하여 주파수 효율의 감소 없이 채널추정 성능을 향상시킬 수 있으며, 한 그룹 내 채널변화 성분을 고려하여 채널갱신을 함으로써 고속 이동환경에도 큰 열화 없이 채널추정 성능을 향상시킬 수 있다. 모의실험을 통하여 제안된 DEM 알고리듬이 EM(Expectation Maximization) 기법과 비교하여 고속이동 환경에서 채널추정 성능을 향상 시키면서 연산 복잡도를 크게 감소시킬 수 있음을 확인한다.
Kim, Hyo Seon;Park, Jong Suk;Nam, Dong Kyu;Jung, Yong Gyu
International Journal of Advanced Culture Technology
/
제8권3호
/
pp.275-279
/
2020
Due to the recent rapid industrialization worldwide, the number of pediatric asthma patients is increasing. And the fine dust containing heavy metals is linked to the characteristics of high toxic lead due to the increase heating in factory operation and automobile driving. It is the reason of arsenic increasing. In the treatment of pediatric asthma patients, drug administration, oral drug entry, and HMPC (Home Management Plan of Care) are used. In this paper, we analyze the relationship between the onset of asthma and the method of prescription for specific childhood asthma in the United States using EM (Expectation Maximization) and MDL (Minimum Description Length) algorithms. And the association is also analyzed by comparing the nature of specific congestion between the past prevalence of digestive asthma and the recent prevalence of environmental pollution.
In the field of nuclear reactor safety study, common cause failures (CCFs) became significant contributors to system failure probability and core damage frequency in most Probabilistic risk assessments. However, it is hard to estimate the reliability of such a system, because of the dependency of components caused by CCFs. In order to analyze the system, we propose an analytic method that can find the parameters with lack of raw data. This study adopts the shock model in which the failure probability increases as the shock is cumulated. We use two-step Expectation and Maximization (EM) algorithm to find the unknown parameters. In order to verify the analysis result, we perform the simulation under same environment. This approach might be helpful to build the defensive strategy for the CCFs.
In this paper, we propose a variational expectation-maximization algorithm that computes posterior probabilities from Latent Dirichlet Allocation (LDA) model. The algorithm approximates the intractable posterior distribution of a document term matrix generated from a corpus made up by 50 papers. It approximates the posterior by searching the local optima using lower bound of the true posterior distribution. Moreover, it maximizes the lower bound of the log-likelihood of the true posterior by minimizing the relative entropy of the prior and the posterior distribution known as KL-Divergence. The experimental results indicate that documents clustered to image classification and segmentation are correlated at 0.79 while those clustered to object detection and image segmentation are highly correlated at 0.96. The proposed variational inference algorithm performs efficiently and faster than Gibbs sampling at a computational time of 0.029s.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.