• 제목/요약/키워드: Expansion pressure

검색결과 1,078건 처리시간 0.022초

Barium Titanate를 고상반응으로 합성할때 일어나는 이상팽창에 관한 연구 (A Study of Abnormal Expansion to be Synthesized Barium Titanate in Solid-solid Reaction)

  • 이은상;임대영
    • 한국세라믹학회지
    • /
    • 제22권6호
    • /
    • pp.9-14
    • /
    • 1985
  • When the barium titanate is Synthesized in Solid-solid reaction the abnormal expansion occurs at about 110$0^{\circ}C$. The mixture was made of corresponding to the theoretical composition of barium titanate. The mixture was fired at various temperature from 90$0^{\circ}C$ to 130$0^{\circ}C$, After that the specimen was tested closely with XDR dilatometer and SEM. The results indicate that 1, The activation energy of barium titanate formation was 42 Kcal/mole. 2, Thermal expansion up to to 90$0^{\circ}C$ was mainly caused by $CO_2$ whereas it was mainly caused by the formation of the secondary phase above 100$0^{\circ}C$. 3. Thermal expansion was not influenced by the forming pressure up to 1000kg/$cm^2$ but it was largely influenced bythe forming pressure above 200kg/$cm^2$.

  • PDF

다입력변수를 사용한 멀티형 공조시스템 압축기와 전자팽창밸브의 퍼지 제어 알고리즘 (Fuzzy Control Algorithms for the Compressor and the Electronic Expansion Valve of a Multi-type Air-conditioning System using Multiple Input Variables)

  • 한도영;박관준
    • 설비공학논문집
    • /
    • 제18권2호
    • /
    • pp.163-171
    • /
    • 2006
  • In order to control multi-zone temperatures, a multi-type air-conditioning system may be used. In this study, control algorithms for the compressor and the electronic expansion valve of a multi-type air-conditioning system were developed by using fuzzy logics. The compressor control algorithm was composed of a compressor pressure setpoint algorithm, a compressor pressure setpoint reset algorithm, and a compressor frequency setpoint algorithm. The electronic expansion valve control algorithm was composed of an indoor temperature control algorithm, and a superheat control algorithm. These algorithms were applied to a multi-type air-conditioning system. Test showed good results for the control of a multi-type air-conditioning system.

텐덤형 냉방시스템의 안전운전을 고려한 압축기와 전자팽창밸브 제어 (Control of Compressors and Electronic Expansion Valve considering the Safe Operation of a Tandem-type Air-conditioning system)

  • 한도영;김재현
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.675-680
    • /
    • 2006
  • Capacities of a tandem-type air-conditioner may be modulated by turning on and off of multiple compressors, and adjusting the position of a electronic expansion valve. In this study, control algorithms for compressors and a electronic expansion valve were developed by using fuzzy logics. The pressure control algorithm was also developed for the safe operation of compressors. There algorithms were implemented in a test lab and proved to be effective for the control of indoor air temperature and superheat temperature,

  • PDF

팽창재료를 이용한 지하공동의 비개착식 긴급복구 공법에 대한 실내실험 및 수치해석 (Numerical Analysis and Laboratory Experiment of Rapid Restoration of Underground Cavity Using Expansive Material without Excavation)

  • 이기철;최병현;박종호;김동욱
    • 한국지반신소재학회논문집
    • /
    • 제17권1호
    • /
    • pp.55-64
    • /
    • 2018
  • 본 연구에서는 최근 도심지에서 발생하고 있는 지반함몰에 대하여 팽창재료를 이용한 긴급복구공법을 적용하고 이러한 공법의 적합성을 수치해석적으로 판단하고자 한다. 수치해석에 적용된 팽창재료의 특성을 평가하기 위하여 실내실험을 수행하였다. 실험으로 구한 팽창특성을 반영하여 다양한 공동 형상(직사각형 단면을 가지는 공동에 대하여 다양한 높이와 폭 조합)에 대하여 팽창재료를 적용하였을 경우 팽창재료 및 지반 거동을 평가하였다. 해석 결과, 공동의 상단과 하단의 연직변위는 공동의 높이보다는 공동의 폭에 큰 영향을 받으며, 공동 측면부의 수평변위는 공동 폭 보다는 공동의 높이의 영향을 많이 받는 것으로 나타났다. 또한, 팽창압이 작용하였을 경우 도로상부 표층의 수직변위량은 공동의 높이보다는 공동의 폭에 큰 영향을 받는 것을 확인할 수 있었다.

후방압출에서 펀치형상에 따른 접촉경계면의 표면부하상태 (Surface Stress Profiles at the Contact Boundary in Backward Extrusion Processes for Various Punch Shapes)

  • 노정훈;김민태;비스아라;황병복
    • 소성∙가공
    • /
    • 제18권7호
    • /
    • pp.565-571
    • /
    • 2009
  • This paper is concerned with the analysis on the surface stress profiles of perfectly plastic material in backward extrusion process. Due to heavy surface expansion appeared usually in the backward extrusion process, the tribological conditions along the interface between the material and the punch land are very severe. In the present study, the analyses have focused to reveal the surface conditions at the contact boundary for various punch shapes in terms of surface expansion, contact pressure, and relative movement between punch and workpiece which consists of sliding velocity and distance, respectively. Punch geometries adopted in the analysis include concave, hemispherical, pointed and ICFG recommended shapes. Extensive simulation has been conducted by applying the rigid-plastic finite element method to the backward extrusion process under different punch geometries. The simulation results are summarized in terms of surface expansion, contact pressure, sliding velocity and sliding distance at different reduction in height, deformation patterns, and load-stroke relationship, respectively.

확관을 고려한 불균일 내면가공관의 전열특성 (Heat Transfer Characteristics of the Non-Uniform Grooved Tube Considering Tube Expansion)

  • 이상무;박병덕
    • 설비공학논문집
    • /
    • 제24권7호
    • /
    • pp.553-559
    • /
    • 2012
  • A plate-fin heat exchanger is a type of heat exchanger widely used in air conditioners, and tubes and fins are tightly assembled by the mechanical expansion process of tubes. The tube expansion process deforms the grooves inside the tube, and the groove shapes also affect the adhesion between tubes and fins. In this study, the adhesion and heat transfer performance affected by the tube expansion of the non-uniform groove shape tube with different heights are investigated by both analysis and experiments. From the analysis method, it was shown that the contact pressure of non-uniform groove tube is higher than that of the uniform groove tube, and the most appropriate high groove number of the non-uniform groove tube is designed for the maximum contact pressure. From the experimental results, the decreasing rate of the condensation heat transfer coefficient is smaller in the non-uniform groove tube with different heights, compared to the conventional uniform groove tube. Also, the air-side heat transfer coefficient of the non-uniform groove tube with different heights is higher than that of the uniform groove tubes.

핀틀 로켓의 초기 최적 노즐 팽창비 결정 방법 연구 (The stydy on determination method of initial optimal nozzle expansion ratio in pintle solid rocket motor)

  • 김중근;이영원
    • 한국항공우주학회지
    • /
    • 제39권8호
    • /
    • pp.744-749
    • /
    • 2011
  • 본 논문에서는 핀틀 로켓의 초기 최적 노즐 팽창비를 결정하는 방법에 대해서 제시하였다. 초기 최적 노즐 팽창비는 최대/최소 압력의 추력 계수로부터 계산되는 질량 가중 추력 계수를 최대화시켜 결정하였으며 이는 주어진 임무를 수행함에 있어 소요되는 추진제무게가 최소화되는 조건과 일치한다. 초기 최적 노즐 팽창비 결정에 영향을 주는 인자는 최대 압력, 추력조절비 그리고 총추력비이며 이중에서 총추력비가 가장 큰 영향을 준다.

부항요법(附缸療法)의 압력특성에 관한 실험적 연구 (Experimental Study on the Pressure Characteristics in the Cupping Therapy)

  • 김양중;김도호;염승철;임병철;최연성;이건휘;김형수;이재규;이건목
    • Journal of Acupuncture Research
    • /
    • 제25권1호
    • /
    • pp.121-130
    • /
    • 2008
  • Objectives : Cupping therapy is a stimulation therapy similar to acupuncture and moxibustion with effects that differ depending on the degree of stimulus. To make the strength of the skin objective in cupping therapy for this study, we measured negative pressure in the cupping jar and calculated the expansion rate of the skin. Subjects and Methods : In this study, we experimented with cupping therapy jars made for sale and used in clinics. We studied the pressure in the jars and the changes on the skin surface by measuring properties. We used commercial jars of four different volumes and diameters and tried to discover the properties on the size of the jar. Results : The results of experiment with the cupping therapy are as follows: 1. The lowest pressure in a jar was measured at $-600{\sim}610mmHg$, and the number of operating of vacuum pump for reaching lowest pressure was increased recording where the volume of the jar would be big, but the lowest pressure was not increased recording where the size of that would be big. 2. As the vacuum pump continued to operate, the pressure gradient in the jar got smaller which shows that the expansion rate of the skin was not linear. The pressure gradient shows different operational numbers on the vacuum pump near 0mmHg/operation unrelated to jar volume. 3. When negative pressure worked on the jar, air in the jar decreased. The percentage of air gradually reduced as the negative pressure acted in the jar. For example, the percentage of skin was 37-66% when the negative pressure, reatched -500mmHg. According to out results, different test areas generate different percentages of air in the jar, presumably related to skin elasticity. This phenomenon was most pronounced with the smallest jars. 4. At -500mmHg, the expansion rate of the skin was 1.57-1.9 on the abdomen, and $1.52{\sim}1.68$ on the back. The expansion rate of the skin appeared greater when the jar was relatively small, and it appeared smaller when the jar volume was relatively large relatively.

  • PDF

새로운 CO2 오토 캐스케이드 열펌프 시스템의 성능특성 연구 (Study on the performance characteristics of a new CO2 auto-cascade heat pump system)

  • 윤상국
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권3호
    • /
    • pp.191-196
    • /
    • 2017
  • 20세기에 대두된 HCFC나 CFC계의 냉매들의 환경에의 악영향을 극복하기 위하여 보다 환경 친화적인 이산화탄소와 같은 자연냉매에 대한 관심이 커지고 있다. 겨울철 대기의 열원을 이용하여 증발을 유도하는 이산화탄소 열펌프는 증발기의 온도가 높아 효율이 상대적으로 낮아지고, 130bar가 넘는 고압으로 인하여 열펌프 설비 부품들의 제작의 어려움이 따르게 된다. 본 연구는 보다 낮은 압력의 새로운 2단 팽창식 $CO_2$ 오토 캐스케이드 열펌프를 고안하여 이러한 단점들을 해소하고 보다 효율을 증가시키고자 하였다. 새로운 오토 캐스케이드 열펌프에 2단 팽창방식과 효과적인 냉각방식의 시스템 구성을 하여 혼합냉매인 $CO_2$ 와 R32를 적용하였다. 공정에 고압 70bar, 중간 팽창압은 25bar, 최종 저압은 10bar를 적용하여 해석한 결과, 현재의 오토 캐스케이드 열펌프 공정의 COP는 1.629이었으나, 개선된 중간 압력 25bar의 2단 팽창 오토 캐스케이드 공정은 2.332로 현재의 공정보다 43.15% 향상되었다. 또한 저압측 증발기의 온도도 $-10^{\circ}C$ 이하가 되어 찬 외기에도 증발이 용이하게 발생되는 공정이 되었다. 본 공정이 향후 $CO_2$ 열펌프의 성능계수를 보다 향상시키고 고압에 따른 부품 문제들의 해소에 기여할 수 있는 공정으로 분석되었다.

Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading

  • Surmiri, Azam;Nayebi, Ali;Rokhgireh, Hojjatollah;Varvani-Farahani, Ahmad
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.101-108
    • /
    • 2020
  • The present study intends to analyze damage in thin-walled steel cylinders undergoing constant internal pressure and thermal cycles through use of anisotropic continuum damage mechanics (CDM) model coupled with nonlinear kinematic hardening rule of Chaboche. Materials damage in each direction was defined based on plastic strain and its direction. Stress and strain distribution over wall-thickness was described based on the CDM model and the return mapping algorithm was employed based on the consistency condition. Plastic zone expansion across the wall thickness of cylinders was noticeably affected with change in internal pressure and temperature gradients. Expansion of plastic zone over wall-thickness at inner and outer surfaces and their boundaries demarking elastic and plastic regions was attributed to the magnitude of damage induced over thermomechanical cycles on the thin-walled samples tested at various pressure stresses.