• 제목/요약/키워드: Expansion Method

Search Result 3,557, Processing Time 0.028 seconds

Investigating the load-displacement restorative force model for steel slag self-stressing concrete-filled circular steel tubular columns

  • Feng Yu;Bo Xu;Chi Yao;Alei Dong;Yuan Fang
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.615-631
    • /
    • 2023
  • To investigate the seismic behavior of steel slag self-stressing concrete-filled circular steel tubular (SSSCFCST) columns, 14 specimens were designed, namely, 10 SSSCFCST columns and four ordinary steel slag (SS) concrete (SSC)-filled circular steel tubular (SSCFCST) columns. Comparative tests were conducted under low reversed cyclic loading considering various parameters, such as the axial compression ratio, diameter-thickness ratio, shear-span ratio, and expansion ratio of SSC. The failure process of the specimens was observed, and hysteretic and skeleton curves were obtained. Next, the influence of these parameters on the hysteretic behavior of the SSSCFCST columns was analyzed. The self stress of SS considerably increased the bearing capacity and ductility of the specimens. Results indicated that specimens with a shear-span ratio of 1.83 exhibited compression bending failure, whereas those with shear-span ratios of 0.91 or 1.37 exhibited drum-shaped cracking failure. However, shear-bond failure occurred in the nonloading direction. The stiffness of the falling section of the specimens decreased with increasing shear-span ratio. The hysteretic curves exhibited a weak pinch phenomenon, and their shapes evolved from a full shuttle shape to a bow shape during loading. The skeleton curves of the specimens were nearly complete, progressing through elastic, elastoplastic, and plastic stages. Based on the experimental study and considering the effects of the SSC expansion rate, shear-span ratio, diameter-thickness ratio, and axial compression ratio on the seismic behavior, a peak displacement coefficient of 0.91 was introduced through regression analysis. A simplified method for calculating load-displacement skeleton curves was proposed and loading and unloading rules for SSSCFCST columns were provided. The load-displacement restorative force model of the specimens was established. These findings can serve as a guide for further research and practical application of SSSCFCST columns.

A Study on the Engineering Characteristics of CLSM (유동성 채움재의 공학적 특성 연구)

  • Jung, Min-Ji;Jeon, Byeong-Won;Kim, Byeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.19-28
    • /
    • 2024
  • This study explores the long-term decline in the uniaxial compressive strength of Controlled Low Strength Material (CLSM) by preparing a sample with a 1:1 mixing ratio of CLSM and water. Uniaxial compressive strength tests were conducted after 7 and 28 days of curing. The results revealed that the compressive strength at 28 days was reduced by a factor of 2.85 compared to that at 7 days. Additionally, when expansion was introduced under the same mixing conditions, there was a significant reduction in compressive strength. Point load strength tests based on 7 and 28 days of curing indicated a disparity of 29.27 to 58.76 and 48.19 to 95.13 times, respectively, between the point load strength and the uniaxial compressive strength at 7 days. The differences observed in the findings of this study compared to previous studies may be attributed to variations in the precision of the test method and the sample production process. Therefore, it is essential to establish clear testing methods to accurately evaluate CLSM.

Distributed Energy System Connection Limit Capacity Increase Technology Using System Flexible Resources (계통유연자원을 활용한 분산에너지 계통접속 한계용량 증대 기술)

  • Jeong Min Park
    • Journal of Integrative Natural Science
    • /
    • v.16 no.4
    • /
    • pp.139-145
    • /
    • 2023
  • Due to changes in the distribution system and increased demand for renewable energy, interest in technology to increase the limit capacity of distributed energy grid connection using grid flexible resources is also increasing. Recently, the distribution system system is changing due to the increase in distributed power from renewable energy, and as a result, problems with the limited capacity of the distribution system, such as waiting for renewable energy to connect and increased overload, are occurring. According to the power generation facility status report provided by the Korea Power Exchange, of the total power generation capacity of 134,020 MW as of 2021, power generation capacity through new and renewable energy facilities is 24,855 MW, accounting for approximately 19%, and among them, power generation through solar power accounts for a total portion of the total. It was analyzed that the proportion of solar power generation facilities was high, accounting for 75%. In the future, the proportion of new and renewable energy power generation facilities is expected to increase, and accordingly, an efficient operation plan for the distribution system is needed. Advanced country-type NWAs that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power in order to improve distribution network use efficiency without expanding distribution facilities due to the expansion of renewable energy. An integrated operating system is needed. In this study, in order to improve the efficiency of distribution network use without expanding distribution facilities due to the expansion of renewable energy, we developed a method that can integrate the operation and management of load characteristics for each line of the distribution system, power distribution, regional characteristics, and economic feasibility of distributed power. We want to develop an integrated operation system for NWAs similar to that of advanced countries.

Exploring the Potential Use of Metaverse Platforms as a Mission Field for the MZ Generation : with a Focus on Their Active Engagement (MZ 세대 선교지로서의 메타버스 플랫폼 활용 가능성 탐색 연구 : MZ 세대들의 활발한 접근 가능성을 중심으로)

  • Kim Suyeon
    • Journal of Christian Education in Korea
    • /
    • v.76
    • /
    • pp.213-235
    • /
    • 2023
  • Purpose of study: The focus of this study is to explore the potential of using the metaverse platform as a mission field for the MZ generation and to derive utilization strategies. Research content and method: The content and methodology of the research are as follows: examining the metaverse platforms most widely utilized by the MZ generation from a social and cultural perspective, reviewing the characteristics of the MZ generation, and exploring elements in the metaverse that can be utilized as a mission field (Chapters I and II). The study explores the possibilities of approaching the metaverse as a mission site, presenting spatial utilization strategies centered around the active engagement potential of the MZ generation (Chapters III, IV, and V). Conclusions and Suggestions: The conclusion and recommendations are as follows: The metaverse space is considered familiar and highly appealing to the MZ generation, revealing the potential for its effective use and expansion. Therefore, it is urgent not only to utilize the metaverse space as a Christian mission field but also to take responsibility for its use and expansion as a Christian cultural space.

Frequency Response Analysis of Array-Type MEMS Resonators by Model Order Reduction Using Krylov Subspace Method (크리로프 부공간법에 근거한 모델차수축소기법을 통한 배열형 MEMS 공진기의 주파수응답해석)

  • Han, Jeong-Sam;Ko, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.878-885
    • /
    • 2009
  • One of important factors in designing MEMS resonators for RF filters is obtaining a desired frequency response function (FRF) within a specific frequency range of interest. Because various array-type MEMS resonators have been recently introduced to improve the filter characteristics such as bandwidth, pass-band, and shape factor, the degrees of freedom (DOF) of finite elements for their FRF calculation dramatically increases and therefore raises computational difficulties. In this paper the Krylov subspace-based model order reduction using moment-matching with non-zero expansion points is represented as a numerical solution to perform the frequency response analyses of those array-type MEMS resonators in an efficient way. By matching moments at a frequency around the specific operation range of the array-type resonators, the required FRF can be efficiently calculated regardless of their operating frequency from significantly reduced systems. In addition, because of the characteristics of the moment-matching method, a minimal order of reduced system with a prearranged accuracy can be determined through an error indicator using successive reduced models, which is very useful to automate the order reduction process and FRF calculation for structural optimization iterations. We also found out that the presented method could obtain the FRF of a $6\times6$ array-type resonator within a seventieth of the computational time necessary for the direct method and in addition FRF calculation by the mode superposition method could not even be completed because of a data overflow with a half after calculation of 9,722 eigenmodes.

Modeling of Magentic Levitation Logistics Transport System Using Extreme Learning Machine (Extreme Learning Machine을 이용한 자기부상 물류이송시스템 모델링)

  • Lee, Bo-Hoon;Cho, Jae-Hoon;Kim, Yong-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.269-275
    • /
    • 2013
  • In this paper, a new modeling method of a magnetic levitation(Maglev) system using extreme learning machine(ELM) is proposed. The linearized methods using Taylor Series expansion has been used for modeling of a Maglev system. However, the numerical method has some drawbacks when dealing with the components with high nonlinearity of a Maglev system. To overcome this problem, we propose a new modeling method of the Maglev system with electro magnetic suspension, which is based on ELM with fast learning time than conventional neural networks. In the proposed method, the initial input weights and hidden biases of the method are usually randomly chosen, and the output weights are analytically determined by using Moore-Penrose generalized inverse. matrix Experimental results show that the proposed method can achieve better performance for modeling of Maglev system than the previous numerical method.

Regularization Method by Subset Selection for Structural Damage Detection (구조손상 탐색을 위한 부 집합 선택에 의한 정규화 방법)

  • Yun, Gun-Jin;Han, Bong-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.73-82
    • /
    • 2008
  • In this paper, a new regularization method by parameter subset selection method is proposed based on the residual force vector for damage localization. Although subset selection using the fundamental modal characteristics as a residual function has been successful in detecting a single damage location, this method seems to have limited capabilities in the detection of multiple damage locations and typically requires cumbersome weighting values. The method is presented herein and considers cases in which damage detection must be achieved using incomplete measurements of the structural responses. Model expansion is incorporated to deal with this challenge. The unique advantage of employing the new regularization method is that it can reliably identify multiple damage locations. Through an illustrative example, the proposed damage detection method is demonstrated to be a reliable tool for identifying multiple damage locations for a planar truss structure.

Chlorophyll-a Forcasting using PLS Based c-Fuzzy Model Tree (PLS기반 c-퍼지 모델트리를 이용한 클로로필-a 농도 예측)

  • Lee, Dae-Jong;Park, Sang-Young;Jung, Nahm-Chung;Lee, Hye-Keun;Park, Jin-Il;Chun, Meung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.777-784
    • /
    • 2006
  • This paper proposes a c-fuzzy model tree using partial least square method to predict the Chlorophyll-a concentration in each zone. First, cluster centers are calculated by fuzzy clustering method using all input and output attributes. And then, each internal node is produced according to fuzzy membership values between centers and input attributes. Linear models are constructed by partial least square method considering input-output pairs remained in each internal node. The expansion of internal node is determined by comparing errors calculated in parent node with ones in child node, respectively. On the other hands, prediction is performed with a linear model haying the highest fuzzy membership value between input attributes and cluster centers in leaf nodes. To show the effectiveness of the proposed method, we have applied our method to water quality data set measured at several stations. Under various experiments, our proposed method shows better performance than conventional least square based model tree method.

Rotation Angle Estimation Method using Radial Projection Profile (방사 투영 프로파일을 이용한 회전각 추정 방법)

  • Choi, Minseok
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.10
    • /
    • pp.20-26
    • /
    • 2021
  • In this paper, we studied the rotation angle estimation methods required for image alignment in an image recognition environment. In particular, a rotation angle estimation method applicable to a low specification embedded-based environment was proposed and compared with the existing method using complex moment. The proposed method estimates the rotation angle through similarity mathcing of the 1D projection profile along the radial axis after converting an image into polar coordinates. In addition, it is also possible to select a method of using vector sum of the projection profile, which more simplifies the calculation. Through experiments conducted on binary pattern images and gray-scale images, it was shown that the estimation error of the proposed method is not significantly different from that of complex moment-based method and requires less computation and system resources. For future expansion, a study on how to match the rotation center in gray-scale images will be needed.

Research on the Analysis of Maritime Traffic Pattern using Centroid Method (중심점 기법을 이용한 통항패턴 분석에 관한 연구)

  • Kim, Hye-Jin;Oh, Jae-Yong
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.453-458
    • /
    • 2018
  • The analysis of maritime traffic refers to the processes that are used to analyze the environmental characteristics of the target area and, based on this analysis, predict the traffic pattern of the vessels. In recent years, maritime traffic analysis has become significant with increase maritime traffic volume and expansion of VTS coverage area. In addition, maritime traffic analysis is also applicable in the safety assessment of port facilities and the VTS (Vessel Traffic Service). In this paper, we propose a method to analyze the vessels' traffic pattern by using the heat map and the centroid method. This method is efficient for the analysis of the vessel trajectory data where spatial characteristics change with time. In the experiments, the traffic density and centroid by time have were analyzed. Trajectory data collected at Mokpo harbor was adopted. Finally, we reviewed the experimental results to verify the feasibility of the proposed method as a maritime traffic analysis method.