• Title/Summary/Keyword: Expansion Method

Search Result 3,557, Processing Time 0.027 seconds

Crushing study for interlocked armor layers of unbonded flexible risers with a modified equivalent stiffness method

  • Ren, Shaofei;Liu, Wencheng;Song, Ying;Geng, Hang;Wu, Fangguang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.521-529
    • /
    • 2019
  • Interlocked armor layers of unbonded flexible risers may crush when risers are being launched. In order to predict the behavior of interlocked armor layers, they are usually simplified as rings with geometric and contact nonlinearity ignored in the open-literature. However, the equivalent thickness of the interlocked armor layer has not been addressed yet. In the present paper, a geometric coefficient ${\gamma}$ is introduced to the equivalent stiffness method, and a linear relationship between ${\gamma}$ and geometric parameters of interlocked armor layers is validated by analytical and finite element models. Radial stiffness and equivalent thickness of interlocked armor layers are compared with experiments and different equivalent methods, which show that the present method has a higher accuracy. Furthermore, hoop stress distribution of interlocked armor layer under crushing is predicted, which indicates the interlocked armor layer can be divided into two compression and two expansion zones by four symmetrically distributed singular points.

Distances to Host Galaxies of Type IIP Supernovae in Intensive Monitoring Survey of Nearby Galaxies using Photometric Color Method

  • Kim, Sophia;Im, Myungshin;Choi, Changsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.85.4-85.4
    • /
    • 2019
  • Supernovae (SNe) are well known as good cosmological distance probes owing to their brightness and well-characterized light curve property. Specifically, type Ia SNe have contributed greatly to our understanding of acceleration of cosmic expansion. However, type IIP supernovae occur most frequently (~ 40% of all) at low and high redshift. As knowledge on the type IIP SNe increases, distance measurement methods using type IIP SNe have evolved. In this study, we apply Photometric Color Method (PCM), which needs only photometric data using properties of plateau on type IIP SNe light curves, to measure distances of several host galaxies of SNe IIP from the Intensive Monitoring Survey of Nearby Galaxies (IMSNG). The daily monitoring of galaxies at < 50 Mpc allows us to construct a dense light curve of SNe that occurred in our target galaxies. We observed two SNe IIP, SN2014cx and SN2017eaw and measured distances to their host galaxies, NGC 337 and NGC6946 respectively. Our results are comparable with other secondary distance measurement methods, 4-5 Mpc, however smaller than the result derived from the Tip of Red Giant Branch (TRGB) method, $6.7{\pm}0.2$ and $7.7{\pm}0.3Mpc$.

  • PDF

Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell

  • Dai, Zuocai;Jiang, Zhiyong;Zhang, Liang;Habibi, Mostafa
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.175-189
    • /
    • 2021
  • In this article, frequency characteristics, and sensitivity analysis of a size-dependent laminated composite cylindrical nanoshell under bi-directional thermal loading using Nonlocal Strain-stress Gradient Theory (NSGT) are presented. The governing equations of the laminated composite cylindrical nanoshell in thermal environment are developed using Hamilton's principle. The thermodynamic equations of the laminated cylindrical nanoshell are obtained using First-order Shear Deformation Theory (FSDT) and Fourier-expansion based Generalized Differential Quadrature element Method (FGDQM) is implemented to solve these equations and obtain natural frequency and critical temperature of the presented model. The novelty of the current study is to consider the effects of bi-directional temperature loading and sensitivity parameter on the critical temperature and frequency characteristics of the laminated composite nanostructure. Apart from semi-numerical solution, a finite element model was presented using the finite element package to simulate the response of the laminated cylindrical shell. The results created from finite element simulation illustrates a close agreement with the semi-numerical method results. Finally, the influences of temperature difference, ply angle, length scale and nonlocal parameters on the critical temperature, sensitivity, and frequency of the laminated composite nanostructure are investigated, in details.

Incorporation of anisotropic scattering into the method of characteristics

  • Rahman, Anisur;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3478-3487
    • /
    • 2022
  • In this study, we incorporate an anisotropic scattering scheme involving spherical harmonics into the method of characteristics (MOC). The neutron transport solution in a light water reactor can be significantly improved because of the impact of an anisotropic scattering source with the MOC flat source approximation. Several problems are selected to verify the proposed scheme and investigate its effects and accuracy. The MOC anisotropic scattering source is based on the expansion of spherical harmonics with Legendre polynomial functions. The angular flux, scattering source, and cross section are expanded in terms of the surface spherical harmonics. Later, the polynomial is expanded to achieve the odd and even parity of the source components. Ultimately, the MOC angular and scalar fluxes are calculated from a combination of two sources. This paper presents various numerical examples that represent the hot and cold conditions of a reactor core with boron concentration, burnable absorbers, and control rod materials, with and without a reflector or baffle. Moreover, a small critical core problem is considered which involves significant neutron leakage at room temperature. We demonstrate that an anisotropic scattering source significantly improves solution accuracy for the small core high-leakage problem, as well as for practical large core analyses.

Propagating and evanescent waves in a functionally graded nanoplate based on nonlocal theory

  • Cancan Liu;Jiangong Yu;Bo Zhang;Xiaoming Zhang;Xianhui Wang
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.463-474
    • /
    • 2023
  • The purpose of this paper is to present the analysis of propagating and evanescent waves in functionally graded (FG) nanoplates with the consideration of nonlocal effect. The analytical integration nonlocal stress expansion Legendre polynomial method is proposed to obtain complete dispersion curves in the complex domain. Unlike the traditional Legendre polynomial method that expanded the displacement, the presented polynomial method avoids employing the relationship between local stress and nonlocal stress to construct boundary conditions. In addition, the analytical expressions of numerical integrations are presented to improve the computational efficiency. The nonlocal effect, inhomogeneity of medium and their interactions on wave propagation are studied. It is found that the nonlocal effect and inhomogeneity of medium reduce the frequency bandwidth of complex evanescent Lamb waves, and make complex evanescent Lamb waves have a higher phase velocity at low attenuation. The occurrence of intersections of propagating Lamb wave in the nonlocal homogeneous plate needs to satisfy a smaller Poisson's ratio condition than that in the classical elastic theory. In addition, the inhomogeneity of medium enhances the nonlocal effect. The conclusions obtained can be applied to the design and dynamic response evaluation of composite nanostructures.

Deep learning of sweep signal for damage detection on the surface of concrete

  • Gao Shanga;Jun Chen
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.475-486
    • /
    • 2023
  • Nondestructive evaluation (NDE) is an important task of civil engineering structure monitoring and inspection, but minor damage such as small cracks in local structure is difficult to observe. If cracks continued expansion may cause partial or even overall damage to the structure. Therefore, monitoring and detecting the structure in the early stage of crack propagation is important. The crack detection technology based on machine vision has been widely studied, but there are still some problems such as bad recognition effect for small cracks. In this paper, we proposed a deep learning method based on sweep signals to evaluate concrete surface crack with a width less than 1 mm. Two convolutional neural networks (CNNs) are used to analyze the one-dimensional (1D) frequency sweep signal and the two-dimensional (2D) time-frequency image, respectively, and the probability value of average damage (ADPV) is proposed to evaluate the minor damage of structural. Finally, we use the standard deviation of energy ratio change (ERVSD) and infrared thermography (IRT) to compare with ADPV to verify the effectiveness of the method proposed in this paper. The experiment results show that the method proposed in this paper can effectively predict whether the concrete surface is damaged and the severity of damage.

Improvement of Digital Identify Proofing Service through Trend Analysis of Online Personal Identification

  • JongBae Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • This paper analyzes the trends of identification proofing services(PIPSs) to identify and authenticate users online and proposes a method to improve PIPS based on alternative means of resident registration numbers in Korea. Digital identity proofing services play an important role in modern society, but there are some problems. Since they handle sensitive personal information, there is a risk of information leakage, hacking, or inappropriate access. Additionally, online service providers may incur additional costs by applying different PIPSs, which results in online service users bearing the costs. In particular, in these days of globalization, different PIPSs are being used in various countries, which can cause difficulties in international activities due to lack of global consistency. Overseas online PIPSs include expansion of biometric authentication, increase in mobile identity proofing, and distributed identity proofing using blockchain. This paper analyzes the trend of PIPSs that prove themselves when identifying users of online services in non-face-to-face overseas situations, and proposes improvements by comparing them with alternative means of Korean resident registration numbers. Through the proposed method, it will be possible to strengthen the safety of Korea's PIPS and expand the provision of more reliable identification services.

An Experimental Study on Thermal Prestressing Method for Strengthening Concrete Bridge (콘크리트 교량의 보강을 위한 온도 프리스트레싱 공법의 실험적 연구)

  • Ahn, Jin-Hee;Kim, Jun-Hwan;Choi, Kyu-Tae;Kim, Sang-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.4
    • /
    • pp.483-490
    • /
    • 2007
  • Traditional external post-tensioning method using either steel bars or tendons is commonly used as a retrofitting method for concrete bridges. However, the external post-tensioning method has some disadvantages such as stress concentration at anchorages and inefficient load carrying capability regarding live loads. Thermal prestressing method is a newly proposed method for strengthening and rehabilitation of concrete girder bridges. Founded on a simple concept of thermal expansion and contraction of steel, the method is a hybrid method of external post-tensioning and steel plate bonding, combining the merits of two methods. In this paper, basic concepts of the method are presented and an illustrative experiment is introduced. From actual experimental data, the thermal prestressing effect is substantiated and the FEM approach for its analysis is verified.

A Study on the Mechanism of Opening-with-Pungent/Lowering-with-Bitter Method of Wenbing and the Spleen/Stomach Disease Treatment in Piweilun (온병학(溫病學) 신개고강법(辛開苦降法)과 『비위론(脾胃論)』의 비위병(脾胃病) 치료 기전에 대한 고찰)

  • Ahn, Jinhee;Kim, Do-hoon
    • Journal of Korean Medical classics
    • /
    • v.33 no.3
    • /
    • pp.91-109
    • /
    • 2020
  • Objectives : The aim of this paper is to compare the mechanisms of the OP/LB method and the SSD treatment in 『Piweilun』. Methods : Wenbing texts, articles on the OP/LB method, and the 『Piweilun』 was examined for comparison of treatment mechanisms of SSD. Results : The mechanism of the OP/LB method in treating SSD was to treat the Spleen and Stomach separately, to restore the ascending/descending pattern of qi through simultaneous use of pungent and bitter flavors which raises and lowers, respectively. Moreover, the use of medicinals with contrary properties regulate the other's biased nature, and none of the medicinals create dampness. The pungent and bitter flavors play central roles, where the pungent flavor opens and communicates and the bitter flavor clears and lowers. The treatment method of SSD in the 『Piweilun』 treat the Spleen and Stomach together, with a focus on raising and dispersing through upraising yang and reinforcing qi by means of Wind medicinals with pungent and bitter flavors added to sweet and warm medicinals. Conclusions : Owing to the expansion of the OP/LB method concept by modern-contemporary scholars, the potential for treating SSD as can be seen in the 『Piweilun』 with the OP/LB method has emerged. The similarity between the OP/LB method and treatment of SSD in the 『Piweilun』 is that the objective of the formulas is to lower fire heat and communicate qi to help qi movement. This common objective allows for treatment of SSD within Wenbing and those in 『Piweilun』 with the said formulas through appropriate modification fit for each situation.

Analysis of Dynamic Crack Propagation using MLS Difference Method (MLS 차분법을 이용한 동적균열전파 해석)

  • Yoon, Young-Cheol;Kim, Kyeong-Hwan;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-26
    • /
    • 2014
  • This paper presents a dynamic crack propagation algorithm based on the Moving Least Squares(MLS) difference method. The derivative approximation for the MLS difference method is derived by Taylor expansion and moving least squares procedure. The method can analyze dynamic crack problems using only node model, which is completely free from the constraint of grid or mesh structure. The dynamic equilibrium equation is integrated by the Newmark method. When a crack propagates, the MLS difference method does not need the reconstruction of mode model at every time step, instead, partial revision of nodal arrangement near the new crack tip is carried out. A crack is modeled by the visibility criterion and dynamic energy release rate is evaluated to decide the onset of crack growth together with the corresponding growth angle. Mode I and mixed mode crack propagation problems are numerically simulated and the accuracy and stability of the proposed algorithm are successfully verified through the comparison with the analytical solutions and the Element-Free Galerkin method results.