• Title/Summary/Keyword: Expansion Method

Search Result 3,557, Processing Time 0.036 seconds

The structural method of modular system expressed in contemporary fashion design (현대 패션디자인에 표현된 모듈러 시스템의 구조방식)

  • Yoon, Jeong-A;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • v.22 no.5
    • /
    • pp.776-793
    • /
    • 2014
  • This study attempted to figure out the usage of the modular system in other fields through literature review and empirical study, analyze its structural method in fashion. After analyzing architecture & product-related books, the Internet data and previous studies, the modular system's five structural methods were obtained. Then, 991 photos of women's clothes from 2003 to 2014 were collected through the fashion websites in Korea and abroad. The results can be summarized as follows: First, the following five structures were derived: assembling structure, overlapping structure, arrangement structure, inserting structure and folding structure. Second, according to analysis on the structural method of the modular system in modern fashion, overlapping structure (34%) was the most common. Third, in fashion, the use of fastener for installation and removal is important for assembling structure. In terms of overlapping structure, 3D volume by vertical accumulation was commonly observed. Arrangement structure revealed a horizontal and flat shape through simple arrangement. In inserting structure, on the contrary, non-standardized modules were used as a part of clothes or decorative elements. In folding structure, origami technique for reduction and expansion was used.

Interpretation of Physical Properties of Marine Sediments Using Multi­Sensor Core Logger (MSCL): Comparison with Discrete Samples

  • Kim, Gil-Young;Kim, Dae-Choul
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.166-172
    • /
    • 2003
  • Multi­Sensor Core Logger (MSCL) is a useful system for logging the physical properties (compressional wave velocity, wet bulk density, fractional porosity, magnetic susceptibility and/or natural gamma radiation) of marine sediments through scanning of whole cores in a nondestructive fashion. But MSCL has a number of problems that can lead to spurious results depending on the various factors such as core slumping, gas expansion, mechanical stretching, and the thickness variation of core liner and sediment. For the verification of MSCL data, compressional wave velocity, wet bulk density, and porosity were measured on discrete samples by Hamilton Frame and Gravimetric method, respectively. Acoustic impedance was also calculated. Physical property data (velocity, wet bulk density, and impedance) logged by MSCL were slightly larger than those of discrete sample, and porosity is reverse. Average difference between MSCL and discrete sample at both sites is relatively small such as 22­24 m/s in velocity, $0.02­-0.08\;g/\textrm{cm}^3$ in wet bulk density, and 2.5­2.7% in porosity. The values also show systematic variation with sediment depth. A variety of factors are probably responsible for the differences including instrument error, various measurement method, sediment disturbance, and accuracy of calibration. Therefore, MSCL can be effectively used to collect physical property data with high resolution and quality, if the calibration is accurately completed.

Prediction for the Performance and Wakes of a Counter-Rotating Wind Turbine Using the Vortex Lattice Method (와류격자기법을 이용한 Counter-Rotating 풍력 발전기의 성능 및 후류 해석 연구)

  • Lee, Seungmin;Son, Eunkuk;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.40.2-40.2
    • /
    • 2011
  • A Counter-rotating wind turbine is one of the new concepts that are proposed to increase the performance of a wind turbine. It has two rotors rotating in the same axis, and it is known that its power coefficient can reach to 0.64 in the ideal case. While the BEMT is widely used to analyze the aerodynamic performance of wind turbines, the analysis of the counter-rotating wind turbine by using it is limited due to the aerodynamic interaction between the two rotors. In this study, the vortex lattice method is used to consider the effect of the front rotor on the rear rotor of the counter-rotating wind turbine and calculate the aerodynamic performance of it. The power and thrust sharing in the two rotors of the counter-rotating wind turbine are predicted and the total power and thrust are compared with that of a single rotor. Moreover, the wake convection and expansion rate is also compared with that of a single rotor.

  • PDF

Single crystal growth of ZnWO4 by the Czochralski method and characterization (Czochralski법에 의한 ZnWO4 단결정 성장 및 특성분석)

  • Lim, Chang-Sung
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.103-108
    • /
    • 2010
  • Single crystals of $ZnWO_4$ with [100], [010] and [001] directions were successfully grown by the Czochralski method. The seed crystals for the single crystal growth of $ZnWO_4$ could be induced by the crystal growth using platinum wires applied by the capillary action from the melt. The growth conditions in each direction were investigated in terms of the variations of rotation speed, pulling rate and diameter of the grown crystals. The formation of cracking in the grown crystals during the cooling process could be prevented by annealing effect. The growth directions of the grown crystals were determined using Laue back reflection. The microscopic characteristics of the grown crystals in each direction were discussed, and their physical properties were evaluated for hardness, thermal expansion coefficients and dielectric constants.

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

PAPR reduction effects in the OFDM by the modified QPSK signal mapping method (OFDM 시스템에서 변형된 QPSK 신호 매핑 방법에 의한 PAPR 감소 효과)

  • 성백민;이우재;주창복
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.2
    • /
    • pp.58-63
    • /
    • 2002
  • One of the important problems of OFDM system is the large PAPR of the output signal, which can result the significant signal distortion in presence of nonlinear amplifiers. To reduce the PAPR, we use fundamentally the level clipping and propose the modified mapping/demapping method for effective reducing the PAPR of the OFDM signals with level clipping. We can significantly improve the BER performance characteristics for the OFDM system. We discussed, through extensive computer simulations, the effects of level clipping and modified mapping/demapping method on the performance of OFDM system including the trade off between bandwidth expansion and BER performance and between bandwidth efficiency and BER performance.

  • PDF

A Study on Zirconia/Metal Functionally Gradient Materials by Sintering Method (III) (소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(III))

  • 정연길;최성철;박철원
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1337-1348
    • /
    • 1995
  • TZP/SUS- and ZT/SUS-functionally gradient materials (FGM) were fabricated by pressureless sintering in Ar-atmosphere. The sintering defects such as warping, frustrum formation, splitting and cracking which originated from shrinkage and sintering behaviors of metal and ceramics different from each other could be controlled by the adjustment with respect to the particle size and phase type of zirconia. The residual stresses generated on the metal and ceramic regions in FGM were characterized with X-ray diffraction method, and relaxed as the thickness and number of compositional gradient layer were increased. The residual stress states in TZP/SUS-FGM have irregular patterns by means of the different sintering behavior and cracking at ceramic-monolith. While in ZT/SUS-FGM, compressive stress is induced on ceramic-monolith by the volume expansion of monoclinic ZrO2 at phase transformation. Also, compressive stress is induced on metal-monolith by the constraint of warping which may be created to the metal direction by the difference of coefficient of thermal expansions. As a consequence, it has been verified that the residual stress generated on FGM is dominantly influenced by the thickness and number of compositional gradient layer, and the sintering defects and residual stress can be controlled by the constraint of the difference of shrinkage and sintering behaviors of each component.

  • PDF

A Computational Method of Wave Resistance of Ships in Water of Finite Depth (유한수심에서의 조파저항계산에 관하여)

  • S.J. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.2
    • /
    • pp.66-72
    • /
    • 1992
  • A computational method of the Michell integral for water of finite depth is developed and the method makes use of the expansion of the hull form by the Legendre polynomial in both the longitudinal and the vertical directions. The wave resistance coefficient is given as a quadruple summation of the product of the shape factor and the hydrodynamic factor. The shape factor depends only upon the geometry of the hull form, and the hydrodynamic factor upon the depth-based Froude number and the ratios of the water depth and the draft to the ship length. Example calculations are done for the Wigley parabolic hull and the Series 60 $C_B$ 0.6, and the comparison of our results with the existing experimental data is shown.

  • PDF

Color Stabilization of Low Toxic Antimicrobial Polypropylene/Poly(hexamethylene guanidine) Phosphate Blends by Taguchi Technique

  • Lee, Sang-Mook;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.411-416
    • /
    • 2009
  • The color stabilization of antimicrobial blends was studied by using poly(hexamethylene guanidine) phosphate (PHMG) as a highly efficient biocidal and nontoxic agent. The Taguchi method was used to determine the optimum conditions for the blending of PHMG in polypropylene (PP) matrix. To improve the yellowing phenomena, two kinds of stabilizer were used together: tetrakis[methylene(3,5-di-t-butyl-4-hydroxyhydrocinnamate)](IN1010) from phenol and tris(2,4-di-t-butylphenylphosphite) (IF168) from phosphorus. According to blend composition and mixing condition, six factors were chosen, with five levels being set for each factor. The orthogonal array was selected as the most suitable for fabricating the experimental design, L25, with 6 columns and 25 variations. The-smaller-the-better was used as an optimization criterion. The optimum conditions for these parameters were 10 phr for PHMG, 2 phr for IN1010, 1 phr for IF168, 10 min for mixing time, $210^{\circ}C$ for mixing temperature, and 30 rpm for rotation speed. Under these conditions, the yellowness index of the blend was 1.52. The processibility of the blends was investigated by Advanced Rheometric Expansion System (ARES). The blend with 0.5 w% PHMG content, diluted with PP, exhibited an antimicrobial characteristic in the shake flask method.

Simulation Method of Photovoltaic Generation Systems using EMTP Type Simulators (EMTP형 시뮬레이터를 이용한 태양광발전시스템 모의 방법)

  • Park Minwon;Yu In-Keun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.6
    • /
    • pp.303-308
    • /
    • 2005
  • As the cost of photovoltaic(PV) generation systems continues to decrease, utility interactive systems are becoming more economically viable. Furthermore, increases in consumer awareness correspond to a willingness to pay a premium price for clean electrical energy generated using renewable energy resources. Especially, PV generation systems, in particular, is undergoing a rapid expansion-showing an industrial growth of approximately 40$\%$ per year in the worldwide, as PV cell and systems technology improve new markets become increasingly accessible. This has resulted in an increased demand for the simulation scheme and operational technologies of utility interactive PV devices and systems. The simulation schemes that can be applied to the utility interactive PV generation systems readily and cheaply under various conditions considering the sort of solar cell, the capacity of systems and the converter system as well are strongly expected and emphasized among researchers. So far, authors have been introducing the simulation method of PV generation systems with several papers. In this paper, authors introduce the simulation way of PV generation systems using EMTP type simulators; EMTP/ATP, EMTDC/PSCAD, RTDS, with each examples. And, by connecting the voltage amplifier to the RTDS a novel simulation method which is extremely close to the real condition of PV generation system is also introduced.