• Title/Summary/Keyword: Expansion Method

Search Result 3,557, Processing Time 0.027 seconds

Development of Fragility Curves of Concrete Bridges (콘크리트 교량의 손상도 곡선 개발)

  • 김상훈;김두희;서형렬;김종인
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.319-325
    • /
    • 2003
  • The fragility curves of seismic retrofitted bridges by steel jacketing of bridge columns and restrainers at expansion joints after the 1994 Northridge earthquake are developed. Fragility curves are represented by lognormal distribution functions with two parameters(fragility parameters consisting of median and log-standard deviation) and developed as a function of peak ground acceleration (PGA). Two parameters in the lognormal distribution are estimated by the maximum likelihood method. The sixty ground acceleration time histories for Los Angeles area developed for FEMA SAC project are used for the dynamic analysis of the bridges and a computer code is developed to calculate hysterestic parameters of bridge columns before and after steel jacketing. The effect of retrofit is expressed in terms of the increase of the median value of the fragility curve for the retrofitted bridge from that of the bridge before retrofit. The comparison of fragility curves of the bridges before and after column retrofit demonstrates that the improvement of the bridges with steel jacketing on the seismic performance is excellent for the damage states defined in this study. The comparison of fragility curves of the bridges before and after restrainers at expansion joints also shows the improvement in the seismic performance of restrained bridges for the severe damage states.

  • PDF

Numerical simulation on propagation of hydrocarbon flame in a deformable tube (변형하는 가스 이송관 내에서 전파하는 탄화수소화염의 수치 해석 모델링)

  • Gwak, Min-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.304-308
    • /
    • 2012
  • This paper presents a numerical investigation on propagation of hydrocarbon (ethylene-air mixture) detonation in a deformable copper tube. In this study, we deal with interactions of multi-materials, gas and solid. In gas phase, the model consists of the reactive compressible Navier-Stokes equations and one step chemical reaction. Also we use Inviscid Euler equations in solid. In order to the interface tracking and the determination of boundary values, our model handle level-set and ghost fluid method. Through the numerical simulation results, we identify generations of expansion waves and interferences by the wall deformation. In addition, we predict the minimum copper tube thickness that ensures safety under an incident detonation.

  • PDF

An analytical investigation of soil disturbance due to sampling penetration

  • Diao, Hongguo;Wu, Yuedong;Liu, Jian;Luo, Ruping
    • Geomechanics and Engineering
    • /
    • v.9 no.6
    • /
    • pp.743-755
    • /
    • 2015
  • It is well known that the quality of sample significantly determines the accuracy of soil parameters for laboratory testing. Although sampling disturbance has been studied over the last few decades, the theoretical investigation of soil disturbance due to sampling penetration has been rarely reported. In this paper, an analytical solution for estimating the soil disturbance due to sampling penetration was presented using cavity expansion method. Analytical results in several cases reveal that the soil at different location along the sample centerline experiences distinct phases of strain during the process of sampling penetration. The magnitude of induced strain is dependent on the position of the soil element within the sampler and the sampler geometry expressed as diameter-thickness ratio D/t and length-diameter ratio L/D. Effects of sampler features on soil disturbance were also studied. It is found that the induced maximum strain decreases exponentially with increasing diameter-thickness ratio, indicating that the sampling disturbance will reduce with increasing diameter or decreasing wall thickness of sampler. It is also found that a large length-diameter ratio does not necessarily reduce the disturbance. An optimal length-diameter ratio is suggested for the further design of improved sampler in this study.

Theoretical Modeling of Oscillation Characteristics of Oscillating Capillary Tube Heat Pipe

  • Bui, Ngoc-Hung;Kim, Jong-Soo;Jung, Hyun-Seok
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • The examinations of the operating mechanism of an oscillating capillary tube heat pipe (OCHP) using the visualization method revealed that the working fluid in the OCHP oscillated to the axial direction by the contraction and expansion of vapor plugs. The contraction and expansion were due to the formation and extinction of bubbles in the evaporating and condensing part, respectively The actual physical mechanism, whereby the heat which was transferred in such an OCHP was complex and not well understood. In this study, a theoretical model of the OCHP was developed to model the oscillating motion of working fluid in the OCHP. The differential equations of two-phase flow were applied and simultaneous non-linear partial differential equations were solved. From the analysis of the numerical results, it was found that the oscillating motion Of working fluid in the OCHP was affected by the operation and design conditions such as the heat flux, the charging ratio of working fluid and the hydraulic diameter of flow channel. The simulation results showed that the proposed model and solution could be used for estimating the operating mechanism in the OCHP.

Evaluation of APR1400 Steam Generator Tube-to-Tubesheet Contact Area Residual Stresses

  • KIPTISIA, Wycliffe Kiprotich;NAMGUNG, Ihn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.18-27
    • /
    • 2019
  • The Advanced Power Reactor 1400 (APR1400) Steam Generator (SG) uses alloy 690 as a tube material and SA-508 Grade 3 Class 1 as a tubesheet material to form tube-to-tubesheet joint through hydraulic expansion process. In this paper, the residual stresses in the SG tube-to-tubesheet contact area was investigated by applying Model-Based System Engineering (MBSE) methodology and the V-model. The use of MBSE transform system description into diagrams which clearly describe the logical interaction between functions hence minimizes the risk of ambiguity. A theoretical and Finite Element Methodology (FEM) was used to assess and compare the residual stresses in the tube-to-tubesheet contact area. Additionally, the axial strength of the tube to tubesheet joint based on the pull-out force against the contact joint force was evaluated and recommended optimum autofrettage pressure to minimize residual stresses in the transition zone given. A single U-tube hole and tubesheet with ligament thickness was taken as a single cylinder and plane strain condition was assumed. An iterative method was used in FEM simulation to find the limit autofrettage pressure at which pull-out force and contact force are of the same magnitude. The joint contact force was estimated to be 20 times more than the pull-out force and the limit autofrettage pressure was estimated to be 141.85MPa.

Priority Analysis of Activation Policies for Agro-healing services (치유농업 서비스 활성화를 위한 정책 우선순위 분석)

  • Bae, Seung-Jong;Kim, Soo-Jin;Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.3
    • /
    • pp.89-102
    • /
    • 2019
  • This study was conducted to investigate priority recognition of experts and related facility operators in establishing policies for revitalizing agro-healing services. After reviewing related studies, 5 policy division and 19 detailed sector were drawn, including improving accessibility, improving promotion and information provision method, improved public relations and information provision, diversification of facility and program, financial support, and expansion of expert and specialized institutions. A questionnaire survey was conducted on agro-healing experts, agro-healing facility operators, social welfare experts, and social welfare facility operators. The AHP analysis indicated that agro-healing experts and facility operators had the highest priority in the division of expansion of expert and specialized institutions, while social welfare experts and facility operators had the highest priority in financial support. The IPA analysis was conducted to identify the priority of each policy sector. Respondents recognized above normal importance to policy divisions, but were relatively aware of the importance of improving accessibility, with overall satisfaction level appearing to be moderate. The results of this study are expected to provide useful information for establishing agro-healing policies and for establishing effective strategies.

An improved model of compaction grouting considering three-dimensional shearing failure and its engineering application

  • Li, Liang;Xiang, Zhou-Chen;Zou, Jin-Feng;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.217-227
    • /
    • 2019
  • This study focuses on an improved prediction model to determine the limiting grouting pressure of compaction grouting considering the ground surface upheaval, which is caused by the three-dimensional conical shearing failure. The 2D-dimensional failure curve in Zou and Xia (2016) was improved to a three-dimensional conical shearing failure for compaction grouting through coordinate rotation. The process of compaction grouting was considered as the cavity expansion in infinite Mohr-Coulomb (M-C) soil mass. The prediction model of limiting grouting pressure of compaction grouting was proposed with limit equilibrium principle, which was validated by comparing the results in El-Kelesh et al. (2001) and numerical method. Furthermore, using the proposed prediction model, the vertical and horizontal grouting tube techniques were adopted to deal with the subgrade settlement in Shao-huai highway at Hunan Provence of China. The engineering applicability and effectiveness of the proposed model were verified by the field test. The research on the prediction model for the limiting grouting pressure of compaction grouting provides practical example to the rapid treatment technology of subgrade settlement.

The Study of Historical Analysis and Educational Extension on Derangement (교란순열에 대한 역사적 탐색과 교육적 확장에 대한 연구)

  • Suh, Bo Euk
    • Journal for History of Mathematics
    • /
    • v.32 no.2
    • /
    • pp.61-77
    • /
    • 2019
  • The study was conducted based on the 'method of mathematical exploration through history'. In recent school education, 'Probability and Statistics' education has been emphasized, and as a result, the study has conducted a study on permutations. Permutation is used in a variety of fields, and in this study, we looked at the Derangement. The results of this study are as follows. First, analysis was made at current school mathematics level and academic mathematics level for Derangement. Second, the historical development process of derangement was examined. Third, based on this, the research direction of this study was decided to be 'Derangement number's triangle(Rencontres number's triangle)', and the inquiry for education expansion was carried out. Fourth, we have presented data on concrete educational expansion by discovering various mathematical facts of the Derangement number's triangle. We hope that the results of this study will provide meaningful implications for the application of mathematics and the presentation of new inquiry directions.

Cosmological constraints using BAO - From spectroscopic to photometric catalogues

  • Sridhar, Srivatsan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2019
  • Measurement of the location of the baryon acoustic oscillation (BAO) feature in the clustering of galaxies has proven to be a robust and precise method to measure the expansion of the Universe. The best constraints so far have been provided from spectroscopic surveys because the errors on the redshift obtained from spectroscopy are minimal. This in turn means that the errors along the line-of-sight are reduced and so one can expect constraints on both angular diameter distance $D_A$ and expansion rate $H^{-1}$. But, future surveys will probe a larger part of the sky and go to deeper redshifts, which correspond to more number of galaxies. Analysing each galaxy using spectroscopy, which is a time consuming task, will not be practically possible. So, photometry will be the most convenient way to measure redshifts for future surveys such as LSST, Euclid, etc. The advantage of photometry is measuring the redshift of vast number of galaxies in a single exposure, but the disadvantage are the errors associated with the measured redshifts. Using a wedge approach, wherein the clustering is split into different wedges along the line-of-sight ${\pi}$ and across the line-of-sight ${\sigma}$, we show that the BAO information can be recovered even for photometric catalogues with errors along the line-of-sight. This means that we can get cosmological distance constraints even if we don't have spectroscopic information.

  • PDF

Climate Change Adaptation Policy and Expansion of Irrigated Agriculture in Georgia, U.S.

  • Park, ChangKeun
    • Asian Journal of Innovation and Policy
    • /
    • v.10 no.1
    • /
    • pp.68-89
    • /
    • 2021
  • The expansion of irrigated agricultural production can be appropriate for the southeast region in the U.S. as a climate change adaptation strategy. This study investigated the effect of supplemental development of irrigated agriculture on the regional economy by applying the supply side Georgia multiregional input-output (MRIO) model. For the analysis, 100% conversion of non-irrigated cultivable acreage into irrigated acreage for cotton, peanuts, corn, and soybeans in 42 counties of southwest Georgia is assumed. With this assumption, the difference in total net returns of production between the non-irrigation and irrigation method is calculated as input data of the Georgia MRIO model. Based on the information of a 95% confidence interval for each crop's average price, the lower and upper bounds of estimated results are also presented. The total impact of cotton production was $60 million with the range of $35 million to $85 million: The total impact of peanuts, soybeans, corn was $10.2 million (the range of $3.28 million to $23.7 million), $6.6 million (the range of $3.1 million to $10.2 million), $1.2 million (the range of -$6 million to $8.5 million), respectively.