• Title/Summary/Keyword: Expansion Concrete

Search Result 586, Processing Time 0.029 seconds

Expansion Properties of Concrete under Various Unit Contents of Expansion Admixture and Curing Conditions (단위 팽창재량 및 양생 환경요인 변화에 따른 콘크리트의 팽창 특성)

  • 한천구;류현기;홍상희;김정진
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.79-88
    • /
    • 2000
  • Usually, the expansive additives is used to prevent the occurrence of drying shrinkage in concrete. However it may sometimes be over-added in field due to the insufficient cognition of constructor's, which may cause the serious problems in concrete structures. In this study the experiments are performed to present the expansion properties of concrete by varying the water to binder ratios, unit contents of expansive additives and curing conditions. By the results, the strength showed an increase with the addition of expansion additives from 30kg/㎥ up to 50kg/㎥, and a great decrease by contraries if the larger amount are added. Also the more the expansion additives were used, the more length change occurred in concrete. In view of the curing conditions, the concrete by air cured appeared a little expansion even the unit expansion additives increased, which showed an opposite inclination of that with standard curing. This could be explained by the less occurrence of hydration in air condition which also lead to the little expansion of concrete. Hence the expansion concrete to be cured in water or moisture condition became an especial important thing. concrete using expansive additives showed that high expansion was taken place with the rise of temperature.

The Method for Determining the Effectiveness Factor(k value) of Concrete Expansion Anchors in accordance with ACI 355.2 (ACI 355.2에 의한 콘크리트 확장앵커의 유효계수(k값) 결정방법)

  • Lee, Byung Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.151-152
    • /
    • 2020
  • Recently, concrete expansion anchors which are a type of post-installed mechanical anchors are widely used in reinforcement concrete structures. In order to be used in the reinforced concrete structures designed in accordance with ACI 318-19 or ACI 349-13, the structural performance tests of the concrete expansion anchors should be conducted in accordance with ACI 355.2. The effectiveness factor(k) of concrete expansion anchors should be determined through the reference tests and used for the design of anchorage to concrete according to ACI 318-19 or ACI 349-13. In this study, we will look into the method for determining the effectiveness factor(k) of concrete expansion anchors and anchorage design process of concrete expansion anchors by using the effectiveness factor(k) in accordance with ACI 349-19.

  • PDF

Propriety Examination of Expansion Joint Spacing of Airport Concrete Pavement by Weather and Material Characteristics (기상과 재료 특성에 의한 공항 콘크리트 포장 팽창줄눈 간격의 적정성 검토)

  • Park, Hae Won;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • PURPOSES : In this study, the propriety of expansion joint spacing of airport concrete pavement was examined by using weather and material characteristics. METHODS : A finite element model for simulating airport concrete pavement was developed and blowup occurrence due to temperature increase was analyzed. The critical temperature causing the expansion of concrete slab and blow up at the expansion joint was calculated according to the initial vertical displacement at the joint. The amount of expansion that can occur in the concrete slab for 20 years of design life was calculated by summing the expansion and contraction by temperature, alkali-silica reaction, and drying shrinkage. The effective expansion of pavement section between adjacent expansion joints was calculated by subtracting the effective width of expansion joint from the summation of the expansion of the pavement section. The temperature change causing the effective expansion of pavement section was also calculated. The effective expansion equivalent temperature change was compared to the critical temperature, which causes the blowup, according to expansion joint spacing to verify the propriety of expansion joint applied to the airport concrete pavement. RESULTS : When an initial vertical displacement of the expansion joint was 3mm or less, the blowup never occurred for 300m of joint spacing which is used in Korean airports currently. But, there was a risk of blow-up when an initial vertical displacement of the expansion joint was 5mm or more due to the weather or material characteristics. CONCLUSIONS : It was confirmed that the intial vertical displacement at the expansion joint could be managed below 3mm from the previous research results. Accordingly it was concluded that the 300m of current expansion joint spacing of Korean airports could be used without blowup by controling the alkali-silica reaction below its allowable limit.

Analytical model of expansion for electric arc furnace oxidizing slag-containing concrete

  • Shu, Chun-Ya;Kuo, Wen-Ten;Juang, Chuen-Ul
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.937-950
    • /
    • 2016
  • This study applied autoclave expansion and heat curing to accelerate the hydration of concrete and investigated how these methods affect the expansion rate, crack pattern, aggregate size effect, and expansion of electric arc furnace oxidizing slag (EOS)-containing concrete. An expansion prediction model was simulated to estimate the expansion behavior over a long period and to establish usage guidelines for EOS aggregates. The results showed that the EOS content in concrete should range between 20% and 30% depending on the construction conditions, and that coarse aggregates with a diameter of ${\geq}4.75-mm$ are not applicable to construction engineering. By comparison, aggregates with a size of 1.18-0.03 mm resulted in higher expansion rates; these aggregates can be used depending on the construction conditions. On Day 21, the prediction model attained a coefficient of determination ($R^2$) of at least 0.9.

A Study on Thermal Expansion of LMC and RSLMC (LMC와 RSLMC의 열팽창 특성에 관한 연구)

  • Lim, Hong-Beom;Choi, Seong-Yong;Choi, Pan-Gil;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.165-171
    • /
    • 2004
  • Latex modification of concrete provides the material with higher flexural strength, as well as high bond strength and reduced water permeability. However, If the thermal expansion properties of overlay concrete (latex-modified concretes) are big different from that of substrate (ordinary portland cement concrete), these would cause a big interfacial stresses and result in premature failure. Therefore, the purposes of this study were to investigate thermal expansion characteristics of latex-modified concrete with cement types. The result of thermal expansion showed the coefficient of thermal expansion of concretes increased with latex inclusion. The coefficient of thermal expansion of RSLMC was a little smaller than that of LMC, which might be due to the finer cement grain, compacter internal, and stiffer properties of concrete. However, the coefficients of LMC and RSLMC were quite similar to that of ordinary cement concrete. Thus, this would not cause an interfacial stresses and will enable to ensure long-term performance of concrete bridge deck overlays.

  • PDF

A Fundamental Study on Physical Properties of Ultra High-Strength Concrete using Expansion Agent (팽창제를 사용한 초고강도 콘크리트의 물리적 특성에 관한 기초적 연구)

  • Park, Hyun;Han, Da-hee;Cho, Seung-Ho;Kim, Kwang-Ki;Kim, Woo-Jae;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.85-88
    • /
    • 2008
  • As super-high-strength concrete uses a large amount of binder, there is an autogenous shrinkage strain larger than dry shrinkage and it degrades the quality of structures. Thus, we need a technology to minimize the shrinkage strain of super-high-strength concrete. Accordingly, the present study prepared super-high-strength concrete with design strength of over 100MPa and, using an embedded gauge, measured the shrinkage strain of free shrinkage specimens for super-high-strength concrete containing expansion agent. According to the results of this study, the expansion rate of concrete increased in the early stage due to the admixture of expansion agent, but the shrinkage rate went down with the lapse of time. The effect of the admixture of expansion agent on compressive strength appeared insignificant. Further research shall be made on different kinds of expansion agents and various mixture ratios for basic analysis to reduce autogenous shrinkage of super-high-strength concrete.

  • PDF

Analysis of Thermal Expansion of Latex-Modified Concrete (라텍스개질 콘크리트의 열팽창 특성 분석)

  • Choi, Seong-Yong;Lee, Joo-Hyung;Lim, Hong-Beom;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.157-163
    • /
    • 2003
  • The properties of mechanics and durability of LMC have been performed actively. However, little studies on analysis and properties of thermal expansion has been on the temperature variation. Especially, the low of bonding strength and tensile cracking are caused by difference of thermal expansion between LMC and the substrate concrete. Therefore, this study focused on effect of thermal expansion behavior and properties of LMC according to temperature variation. To identify the property of thermal expansion of LMC, tests of modulus of thermal expansion were carried out at 28 days after casting specimen, subjected to temperature variation between $10^{\circ}C$ and $60^{\circ}C$. The results of this study showed the modulus of elastic of LMC was similar to that of ordinary portland concrete(OPC). It means that stresses caused by difference of modulus of elastic did not occur on interface between LMC and existing concrete. The modulus of thermal expansion of LMC had a little smaller than that of OPC. The modulus of thermal expansion of polymer modified concrete is generally larger than OPC, but the result of this test is disagree with the fact, which may be due to the humidity evaporation difference and aggregate properties.

  • PDF

The Effect of the Residual Mortar of Recycled Concrete Aggregate on Alkali Silica Reaction (순환/재생골재의 잔류 모르타르 성분이 알칼리 실리카 반응성에 미치는 영향 평가)

  • Kim, Jeonghyun;Kim, Namho;Yang, Sungchul
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.19-24
    • /
    • 2015
  • PURPOSES : The objective of this study is to evaluate the effect of the residual mortar of recycled concrete aggregate on the expansion behavior during alkali silica reaction (ASR). METHODS: In order to evaluate the net effect of residual mortar on ASR expansion behavior, two aggregate samples with the same original virgin aggregate source but different residual mortar volumes were used. ASTM C1260 test was used to evaluate the ASR expansion behavior of these two aggregates and the original virgin aggregate. RESULTS: The greater the amount of residual mortar in recycled concrete aggregates, the less is the induced ASR expansion. Depending on the amount of residual mortar in recycled concrete aggregate, the ASR expansion of recycled concrete aggregate may be less than half of that of the original virgin aggregate. CONCLUSIONS: The residual mortar of recycled concrete aggregate may lead to the under estimation of the ASR expansion behavior of the original virgin aggregate.

A Study on Properties of CFT filled with Expansion Concrete (팽창 콘크리트를 충전한 강관충전 콘크리트의 물성에 관한 연구)

  • Park, Chun-Young;Lee, Jin-Sung;Song, Jong-Mok;Kim, Hyo-Youl;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.117-120
    • /
    • 2008
  • The Purpose of this is properties of CFT filled with expansion concrete. CFT(concrete filled steel tube) is the structure that circle shape steel column filled with concrete. 3 kinds of expansive additives and variation of replacement rate. we changed expansive additive from 0%, 10%, 20%, 30% of ratio of addition rate are selected for this experiment. Merits of CFT are concrete internal force rising influenced by steel shape restriction, reinforcing the local buckling, excellent resistance to transformation. Generally, High rise building using CFT utilize the high strength and fluidity concrete for packing the tube inside. As the result a steel tube charged expensive concrete has stiffness 1.5times more than a steel tube not charged concrete. Increase of resisting power about compressive stress by binding expansion of expansive concrete affects strength increase and softness.

  • PDF

A Study on the Application of the Electric Arc Furnace Slag Aggregate in Concrete (콘크리트용 골재로서 전기로슬래그의 적용성에 대한 연구)

  • 문한영;유정훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.101-111
    • /
    • 1999
  • Compared with the BF slag, the EAF slag has expansion due to the reaction with water and free CaO. Therefore it is specified in Concrete Specification that the FAP slag aggregated must not be used in concrete. Because of this reason it is unusual to use the EAF slag aggregate in concrete. The EAF slag aggregate treated with accelerated and water aging was comparatively satisfied with fundamental properties, which are specific gravity, unit weight, abrasion and immersion expansion ratio, as concrete aggregate. Therefore when we measured the compressive strength till 28 days, we found that the mortar and concrete replacing the natural aggregate with the EAF slag aggregate by 4 steps had better results than the concrete using the natural aggregate in a view of the compressive strength. But at 91 days, concrete using the EAF slag aggregate had no difference with it using the natural aggregate.