• Title/Summary/Keyword: Expanded natural graphite

Search Result 12, Processing Time 0.023 seconds

Synthesis and Magnetic Properties of Expanded Graphite Oxide/Magnetic Nanoparticle Composite (Expanded Graphite 산화물과 자성 나노입자의 복합화와 자기적 특성)

  • Roh, Il-Pyo;Yim, Hyun-Joon;Kang, Myung-Chul;Rhee, Chan-Hyuk;Shim, In-Bo
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.11-14
    • /
    • 2012
  • The composites of expanded graphite oxide and magnetic nanoparticle (Ni and Co) were synthesized by using simple chemical method. From the raw material natural graphite, the expanded graphite was fabricated using sulfuric acid and $1^{st}$ heat treatment at $600^{\circ}C$ for 1 hour. The expanded graphite was changed to expanded graphite oxide by 2nd heat treatment at $1050^{\circ}C$ for 15 sec and chemical oxidation. The expanded graphite oxide/1-methyl-2-pyrrolidone solution reacts with the magnetic nanoparticle to form a magnetic graphite oxide composite. These graphite-based materials were characterized by x-ray diffractometer, Raman spectroscopy, transmission electron microscope, and vibration sample magnetometer. We expect that these results of this paper were become basis research of graphite oxide composite.

Preparation of Expanded Graphite using Perchloric Acid and It's Application as Anode Materials for High Power Li-ion Secondary Battery (과염소산을 이용한 팽창흑연의 제조 및 고출력 리튬이온전지 음극재로의 응용)

  • Park, Yul-Seok;Zheng, Hua;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.85-94
    • /
    • 2011
  • Expanded graphites were used as anode materials of high power Li-ion secondary battery. The expanded graphite was prepared by mixing the graphite with $HClO_4$ as a intercalation agents and $KMnO_4$ as a oxidizing agents. The physical and electrochemical properties of prepared expanded graphites through the variation of process variables such as contents of intercalation agent and oxidizing agent, and heat treatment temperature were analyzed for determination of optimal conditions as the anode of high power Li-ion secondary battery. After examing the electrochemical properties of expanded graphites at the different preparing conditions, the optimal conditions of expanded graphite were selected as 8 wt.% of oxidizing agent, 400 g of intercalation agent for 20 g of natural graphite, and heat treatment at $1000^{\circ}C$. The sample showed the improved charge/discharge characteristics such as 432 mAh/g of initial reversible capacity, 88% of discharge rate capability at 10 C-rate, and 24 mAh/g of charge capacity at 10 C-rate. However, the expanded graphite had the problems of potential plateaus like natural graphite and lower initial efficiency than the natural graphite.

A Low-Density Graphite-Polymer Composite as a Bipolar Plate for Proton Exchange Membrane Fuel Cells

  • Dhakate, S.R.;Sharma, S.;Mathur, R.B.
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The bipolar plate is the most important and most costly component of proton exchange membrane fuel cells. The development of a suitable low density bipolar plate is scientifically and technically challenging due to the need to maintain high electrical conductivity and mechanical properties. Here, bipolar plates were developed from different particle sizes of natural and expanded graphite with phenolic resin as a polymeric matrix. It was observed that the particle size of the reinforcement significantly influences the mechanical and electrical properties of a composite bipolar plate. The composite bipolar plate based on expanded graphite gives the desired mechanical and electrical properties as per the US Department of Energy target, with a bulk density of 1.55 $g.cm^{-3}$ as compared to that of ~1.87 $g.cm^{-3}$ for a composite plate based on natural graphite (NG). Although the bulk density of the expanded-graphite-based composite plate is ~20% less than that of the NG-based plate, the I-V performance of the expanded graphite plate is superior to that of the NG plate as a consequence of the higher conductivity. The expanded graphite plate can thus be used as an electromagnetic interference shielding material.

Electrical Conductivity of Chemically Reduced Graphene Powders under Compression

  • Rani, Adila;Nam, Seung-Woong;Oh, Kyoung-Ah;Park, Min
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.90-95
    • /
    • 2010
  • Carbon materials such as graphite and graphene exhibit high electrical conductivity. We examined the electrical conductivity of synthetic and natural graphene powders after the chemical reduction of synthetic and natural graphite oxide from synthetic and natural graphite. The trend of electrical conductivity of both graphene (synthetic and natural) was compared with different graphite materials (synthetic, natural, and expanded) and carbon nanotubes (CNTs) under compression from 0.3 to 60 MPa. We found that synthetic graphene showed a marked increment in electrical conductivity compared to natural graphene. Interestingly, the total increment in electrical conductivity was greater for denser graphite; however, an opposite behavior was observed in nanocarbon materials such as graphene and CNTs, probably due to the differing layer arrangement of nanocarbon materials.

Synthesis of Expanded Graphite-Titanium Oxide Composite and its Photocatalytic Performance

  • Oh, Won-Chun;Choi, Jong-Geun;Zhang, Feng-Jun;Go, Yu-Gyoung;Chen, Ming-Liang
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.210-215
    • /
    • 2010
  • In this study, an expanded graphite-titanium oxide composite is developed from expanded graphite (EG) and titanium n-butoxide (TNB). EG is synthesized by chemical intercalation of natural graphite (NG) and rapid expansion at high temperature. TNB is used as the titanium source. The performances of the prepared EG-$TiO_2$ composite are characterized by BET surface area measurements, scan electron microscope (SEM), X-ray diffraction patterns (XRD) and energy dispersive X-ray analysis (EDX). The catalytic activities of the EG-$TiO_2$ composite are investigated by analysis of the degradation of methylene blue (MB) in aqueous solution under irradiation of UV light. Compared with the pristine $TiO_2$ and activity carbon-$TiO_2$ (AC-$TiO_2$) composite, the EG-$TiO_2$ composite shows very high efficiency against MB solution, and the EG could improve the photocatalytic effect of $TiO_2$ in the MB degradation reaction under the irradiation of UV light.

Expanded Graphite 산화물과 Co 자성 나노입자의 복합화에 관한 연구

  • Im, Hyeon-Jun;No, Il-Pyo;Gang, Myeong-Cheol;Yun, Seong-Uk;Sim, In-Bo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.240.2-240.2
    • /
    • 2011
  • 그라파이트 산화물(graphite oxide;G.O)는 그라파이트와는 다르게 물에서의 분산 능력이 뛰어나고 다양한 기판상에 단일 G.O layer를 형성할 수 있는 특성을 가지고 있으며, 유연(flexible)하고 투명(transparent)하기 때문에 다양한 전 자기 디바이스에 적용 가능하다. 특히, 최근 자성산화물 나노입자(magnetic oxide nanoparticles)에 대한 연구가 집중되고 있는데, 이러한 자성 나노입자와 G.O와의 복합체에 대한 연구는 다양한 분야로의 적용성에 대한 새로운 길을 열어주고 있다. 본 연구에서는 화학적 처리법을 적용하여 자성 나노입자(Co 나노입자)와 G.O 복합체를 제조하였다. Natural Graphite powder (N.G)에 $H_2O_4$ (98%) 및 $(NH_4)_2SO_4$를 적정 몰비로 첨가하여 반응 시킨 후 공기 중에서 열처리 공정을 수행하여 expanded graphite (E.G)를 제조 하였다. 열처리된 E.G를 $1,050^{\circ}C$ 온도에서 15~30초 및 30~60초 동안 공기 중에서 열처리 하여 expanded graphite oxide (E.G.O)를 제조하였으며, E.G.O와 $Co(acac)_3$의 화학적 반응을 통하여 Co 자성나노입자-G.O 복합체를 제조하였다. N.G, E.G, E.G.O 및 E.G.O+Co입자의 결정구조 분석을 위하여 XRD 측정을 수행하였으며, FTIR을 이용하여 각 단계에서의 반응성에 대한 연구를 수행하였다. 각 단계에서 표면 및 내부 미세구조 특성 분석을 위하여 SEM, TEM, 및 EDX 분석을 수행하였으며, E.G.O+Co 복합체의 자기적 특성 평가를 위하여VSM (vibrating sample magnetometer) 측정을 수행하였다. 이러한 연구 결과는 향후 자성나노입자와 그라핀과의 복합화를 위한 기저 기술로 활용가능하리라 판단된다.

  • PDF

Photocatalytic Activity of EG-TiO2 Composite for Various Dye Solutions Under UV Light and Visible Light

  • Go, Yu-Gyoung;Kwon, Ho-Joung;Chen, Ming-Liang;Zhang, Feng-Jun;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.19 no.10
    • /
    • pp.555-561
    • /
    • 2009
  • Expanded graphite (EG) is synthesized by chemical intercalation of natural graphite (NG) and rapid expansion at high temperature, with titanium n-butoxide (TNB) used as titanium source by a sol-gel method to prepare EG-TiO$_2$ composite. The performances of the prepared EG-TiO$_2$ composite are characterized by BET surface area measurement, scanning electron microscopy (SEM), X-ray diffraction patterns (XRD) and energy dispersive X-ray analysis (EDX). To compare the photocatalytic activities of the EG-TiO$_2$ composite, three kinds of dye solutions, methylene blue (MB), methylene orange (MO) and rhodamine B (RhB), and two kinds of light source, UV light and visible light (VL), are used. Comparing the results, it can be clearly seen that the degradation of all of the dye solutions under irradiation by UV light is much better than that under irradiation by visible light, and the decomposition of MB solution was better than that of both of MO and RhB solution.

Oxidation-treated of Oxidized Carbons and its Electrochemical Performances for Electric Double Layer Capacitor (산화처리 탄소 및 이를 이용한 EDLC 특성)

  • Yang, Sun-Hye;Kim, Ick-Jun;Jeon, Min-Je;Moon, Seong-In;Kim, Hyun-Soo;An, Kye-Hyeok;Lee, Yun-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.502-507
    • /
    • 2007
  • The oxidation treatment of several carbon materials with a sodium chlorate and 70 wt.% of nitric acid, combined with heat treatment, were attempted to achieve an electrochemical active material with a larger capacitance. Among pitch, needle coke, calcinated needle coke and natural graphite, the structure of needle coke and calacinated needle coke were changed to the graphite oxide structure with the expansion of the inter-layer. On the other hand, the calcinated needle coke after oxidation and heating at $200^{\circ}C$ has exhibited largest capacitance per weight and volume of 29.5 F/g and 24.5 F/ml at the two-electrode system in the potential range of 0 to 2.5 V. The electrochemical performance of the calcinated needle coke was discussed with the phenomenon of the electric field activation and the formation of new pores between the expanded inter-layer at first charge.

The study of thermal properties of graphene/Cu foam hybrid structures (그래핀/구리폼과 그래파이트 하이브리드 구조체의 열전도 특성 연구)

  • Kim, Hee Jin;Kim, Hyeungkeun;Kim, Yena;Lee, Woo Sung;Yoon, Dae Ho;Yang, Woo Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.235-240
    • /
    • 2013
  • Pure-carbon materials such as graphite, graphene, carbon nanotubes, and diamond have very high thermal conductivities. The reported thermal conductivity of graphene is in the range 3000~5000W/m-K at room temperature. Here, we developed graphene/cu foam hybrid type heat spreader to obtain higher thermal conductivity than Cu foam. Hybrid materials were characterized using optical microscopy (OM), scanning electron microscopy (SEM) and thermal conductivity measurement system; LFA (Laser Flash Analysis @ LFA 447, NETZSCH). We suggest that excellent thermal properties of graphene/cu foam hybrid structures are beneficial for all proposed electrical applications and can lead to a thermal management application.

Numerical Simulation of Hydrogen Storage System using Magnesium Hydride Enhanced in its Heat Transfer (열전달 특성이 향상된 마그네슘 수소화물을 이용한 수소저장시스템의 전산모사)

  • KIM, SANG GON;SHIM, JAE HYEOK;IM, YEON HO
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.5
    • /
    • pp.469-476
    • /
    • 2015
  • The purpose of this work is to investigate main factors to design a solid-state hydrogen stroage system with magnesium hydride with 10 wt% graphite using numerical simulation tools. The heat transfer characteristic of this material was measured in order to perform the highly reliable simulation for this system. Based on the measured effective thermal conductivity, a transient heat and mass transfer simulation revealed that the total performance of hydrogen storage system is prone to depend on heat and mass transfer behaviors of hydrogen storage medium instead of its inherent kinetic rate for hydrogen adsorption. Furthermore, we demonstrate that the thermodynamic aspect between equlibrium presssure and temperature is one of key factor to design the hydrogen storage system with high performance using magnesium hydride.