• 제목/요약/키워드: Existing refrigerant

검색결과 61건 처리시간 0.03초

LCD 제조용 노광기에 사용되는 리니어 모터의 냉각조건에 대한 연구 (A Study on Cooling Conditions of a Linear Motor used in an Exposer for the Manufacturing LCD)

  • 양홍천;이영남;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제11권4호
    • /
    • pp.31-36
    • /
    • 2012
  • The high thrust of the linear motor in the exposer generates the high temperature heat by the friction and the electromagnetic forces on its coil. It can cause the thermal deformation and the accuracy of the equipment is finally decreased which has a bad effect on the productivity. In this research, the heat and flow on the linear motor of the exposer has been analyzed. The existing equipment is non-contact fluid refrigerant type. The numerical analysis data of the existing equipment have been acquired and the reliability of the data has been verified. The revised modeling for the next-generation is suggested for cooling the exposer effectively.

4.57 mm 세관 열교환기 내 이산화탄소의 증발열전달 특성 (Evaporation Heat Transfer Characteristics of Carbon Dioxide in the Inner Diameter Tube of 4.57 mm)

  • 구학근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권2호
    • /
    • pp.145-151
    • /
    • 2007
  • The evaporation heat transfer coefficient of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The main components or the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section consists of a smooth, horizontal stainless steel tube of inner diameter of 4.57 mm. The experiments were conducted at mass flux of 200 to $500\;kg/m^2s$, saturation temperature of -5 to $5^{\circ}C$, and heat flux of 10 to $40\;kW/m^2$. The test results showed the heat transfer of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not effect nucleate boiling too much. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Jung et al. But existing correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develope reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

R-22 대체용 혼합냉매의 열역학적 성능에 대한 실험연구 (An experimental investigation of thermodynamic performance of R-22 alternative blends)

  • 황의필;김창년;박영무
    • 설비공학논문집
    • /
    • 제9권1호
    • /
    • pp.82-91
    • /
    • 1997
  • R-410a and R-407c witch have the best potential among the substances being considered as R-22 alternatives were tested as "drop in" refrigerants against a set R-22 baseline tests for comparison. The performance evaluations were carried out in a psychrometric calorimeter test facility using the residential split-type air conditioner under the ARI rating conditions. Other than the use of different lubricant and a hand-operated expansion valve, one of the commercial systems was selected for the experiment. Performance characteristics were measured; compressor power, capacity, VCR, mass flow rate and COP. The tests showed that R-407c can be directly applied to the existing refrigeration system because of its similar vapor pressure and other thermopysical properties with those of R-22. However, it required change to the volume flow rate of compressor in order to achieve the similar performance with R-22 because of its relatively small VCR and capacity. Meanwhile, R-410a has too high a vapor pressure to be applied to the existing system and this feature results in relatively low COP of the system compared to that of R-22. But this could be improved by changing compressor design considering R-410a's relatively high VCR and capacity compared to those of R-22.

  • PDF

수평관내 이산화탄소의 증발 압력강하 (Evaporation Pressure Drop of Carbon Dioxide in a Horizontal Tube)

  • 구학근;손창효
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.63-69
    • /
    • 2007
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and an evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of 4.57 mm inner diameter. The experiments were conducted at saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed that the evaporation pressure drop of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. The measured pressure drop during the evaporation process of $CO_2$ increases with increased mass flux, and decreased saturation temperature. The evaporation pressure drop of $CO_2$ is much lower than that of R 22. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the previous correlation. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

  • PDF

세관내 이산화탄소의 증발 열전달 및 압력강화 (Evaporation Heat Transfer and Pressure Drop of $CO_2$ in a Small diameter Tube)

  • 장승일;최선묵;김대희;박기원;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 전기학술대회논문집
    • /
    • pp.189-194
    • /
    • 2005
  • The evaporation heat transfer and pressure drop of $CO_2$ in a small diameter tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 4.57 mm, and length of 4 m. The experiments were conducted at mass flux of 200 to 700 $kg/m^2s$, saturation temperature of $0^{\circ}C$ to $20^{\circ}C$, and heat flux of 10 to 20 $kW/m^2$ . The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation pressure drop of C02 are highly dependent on the mass flux. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient and pressure drop of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient and friction pressure drop of $CO_2$ in a horizontal tube.

  • PDF

R-22 대체용 혼합냉매의 Drop-In 열역학적 성능 계산 (Drop-In Evaluation of Thermodynamic Performance of R-22 Alternative Refrigerant Mixtures)

  • 주종문;김창년;박영무
    • 설비공학논문집
    • /
    • 제8권3호
    • /
    • pp.423-436
    • /
    • 1996
  • Thermodynamic performance of eight zeotropic R-22 alternative refrigerant mixtures selected by AREP(R-22 Alternative Refrigerants Evaluation Program) and R-32/R-125/R-134a(23%/25%/52%), namely R-407C were evaluated by the "drop-in" simulation method. An existing air conditioner was selected and its design data were used for the simulation. "ARI Test A" air conditions were applied. The degree of vapor superheat at the compressor inlet fixed at $5^{\circ}C$ for all the mixtures. The results of the simulation were compared with those of R-22. COPs of all mixtures except for R-32/R-227ea(35%/65%) and R-32/R-125/R-134a(10%/70%/20%), were higher than that of R-22 by 2%~8%, while the capacities were all lower than that of R-22 by 13%~27%. COP of R-32/R-134a(40%/60%) was 2.4% higher but the capacity was 15% lower than those of R-22. In the case of R-32/R-134a(30%/70%), COP and capacity were 5.5% higher and 15% lower than those of R-22, respectively. Among the ternary mixtures, R-407C and R-32/R-125/R-134a(30%/10%/60%) showed the best performance. COP of R-407C was 2.4% higher than those of R-22 but the capacity was 15% lower.

  • PDF

수평미세관내 NH3 비등열전달 특성 (Boiling Heat Transfer of Ammonia inside Horizontal Smooth Small Tube)

  • 최광일;오종택
    • 설비공학논문집
    • /
    • 제25권2호
    • /
    • pp.101-108
    • /
    • 2013
  • This paper is presented an experimental study of flow boiling heat transfer characteristics of ammonia, and is focused on pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal small tube with inner diameter of 3.0 mm and length of 2000 mm. The direct heating method is applied for supplying heat to the refrigerant, where the test tube is uniformly heated by electric current. The local heat transfer coefficients were obtained over a heat flux range of 20 to $80kW/m^2$, a mass flux range of 50 to $500kg/m^2s$, a saturation temperature range of 0 to $10^{\circ}C$, and quality up to 1.0. The pressure drops increase with increasing mass flux and heat flux, and with decreasing saturation temperature. The heat transfer coefficients increase with increasing mass flux and saturation temperature in middle and high quality region. And the local heat transfer coefficient increase with increasing heat flux in low quality region. The heat transfer coefficient of the experimental result was compared with six existing heat transfer coefficient correlation. A new boiling heat transfer coefficient correlation based on the superposition model for ammonia in small tubes is developed average deviation of -0.17% and mean deviation of 10.85%.

수평미세관내 R-290의 비등열전달 특성 (Boiling Heat Transfer Characteristics of R-290 in Horizontal Smooth Minichannel)

  • 최광일;;오종택
    • 설비공학논문집
    • /
    • 제18권11호
    • /
    • pp.906-914
    • /
    • 2006
  • The present paper dealt with an experimental study of boiling heat transfer characteristics of R-290. Pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal smooth minichannel were obtained with inner tube diameter of 3.0 mm and length of 2,000 mm. The direct electric heating method was applied for supplying a heat to the refrigerant uniformly. The experiments were conducted with R-290 purity of 99.99%, at saturation temperature of 0 to $10^{\circ}C$, a mass flux range of $50{\sim}250kg/m^2s$, and a heat flux range of $5{\sim}20kW/m^2$. The heat transfer coefficients of R-290 increased with increasing mass flux and saturation temperature, wherein the effect of mass flux was higher than that of the saturation temperature. Heat flux has a low effect on the increasing of heat transfer coefficient. The heat transfer coefficient was compared with six existing heat transfer coefficient correlations. The Zhang et al.'s correlation (2004) gave the best prediction of heat transfer coefficient. A new correlation to predict the two-phase flow heat transfer coefficient was developed based on the Chen correlation. The new correlation predicted the experimental data well with a mean deviation of 11.78% and average deviation of -0.07%.

수평미세관내 R-290의 비등열전달 특성 (Boiling Heat Transfer Characteristics of R-290 in Horizontal Minichannel)

  • 최광일;;오종택
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.68-73
    • /
    • 2006
  • The present paper deals with an experimental study of boiling heat transfer characteristics of R-290, and is focused on pressure gradient and heat transfer coefficient of the refrigerant flow inside horizontal smooth minichannel with inner diameter of 3.0 mm and length of 2000 mm. The direct heating method applied for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. The experiments were conducted with R-290 with purity of 99.99% at saturation temperature of 0 to $10^{\circ}C$. The range of mass flux is $50{\sim}250kg/m^2s$ and heat flux is $5{\sim}20kW/m^2$. The heat transfer coefficients of R-290 increases with increasing mass flux and saturation temperature, wherein the effect of mass flux is higher than that of the saturation temperature, whereas the heat flux has a low effect on increasing heat transfer coefficient. The significant effect of mass flux on heat transfer coefficient is shown at high quality, the effect of heat flux on heat transfer coefficient at low quality shows a domination of nucleate boiling contribution. The heat transfer coefficient of the experimental result was compared with six existing heat transfer coefficient correlation. Zang et al.'s correlation(2004) gave the best prediction of heat transfer coefficient.

  • PDF

Copper Filter Dryer 품질보증을 위한 결함 검출 및 원인 분석 (Defect Detection and Cause Analysis for Copper Filter Dryer Quality Assurance)

  • 오석민;박진제;다어반권;장병호;김흥재;김창순
    • 한국산업정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.107-116
    • /
    • 2024
  • Copper Filter Dryer(CFD)는 냉동 및 냉방 시스템에서 냉매의 순환 시 불순물을 제거하여 깨끗한 냉매를 유지하는 역할을 하며, CFD의 결함은 냉동 및 냉방 시스템의 누수, 수명 저하 등 제품의 결함으로 이어질 수 있어 품질보증이 필수적이다. 기존에는 품질 검사 단계에서 작업자가 검사하고 결함을 판단하는 방법이 주로 사용되었으나, 이러한 방법은 주관적으로 판단하기 때문에 정확하지 못하다. 본 논문에서는 CFD 축관 및 용접 공정 과정에서 발생하는 결함을 검출하고 기존의 품질 검사를 대체하기 위해 YOLOv7 객체 감지 알고리즘을 사용하여 결함을 검출했고, F1-Score 0.954, 0.895의 검출 성능을 확인하였다. 또한, 결함 이미지의 Timestamp에 해당하는 센서 데이터 분석을 통해 용접 과정 중 발생하는 결함의 원인을 분석하였다. 본 논문은 CFD 공정 중 발생하는 결함을 검출하고 원인을 분석함으로써 제조 품질보증과 개선 방안을 제시한다.