• Title/Summary/Keyword: Existing buildings

Search Result 1,297, Processing Time 0.024 seconds

Evaluation of damage probability matrices from observational seismic damage data

  • Eleftheriadou, Anastasia K.;Karabinis, Athanasios I.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.299-324
    • /
    • 2013
  • The current research focuses on the seismic vulnerability assessment of typical Southern Europe buildings, based on processing of a large set of observational damage data. The presented study constitutes a sequel of a previous research. The damage statistics have been enriched and a wider damage database (178578 buildings) is created compared to the one of the first presented paper (73468 buildings) with Damage Probability Matrices (DPMs) after the elaboration of the results from post-earthquake surveys carried out in the area struck by the 7-9-1999 near field Athens earthquake. The dataset comprises buildings which developed damage in several degree, type and extent. Two different parameters are estimated for the description of the seismic demand. After the classification of damaged buildings into structural types they are further categorized according to the level of damage and macroseismic intensity. The relative and the cumulative frequencies of the different damage states, for each structural type and each intensity level, are computed and presented, in terms of damage ratio. Damage Probability Matrices (DPMs) are obtained for typical structural types and they are compared to existing matrices derived from regions with similar building stock and soil conditions. A procedure is presented for the classification of those buildings which initially could not be discriminated into structural types due to restricted information and hence they had been disregarded. New proportional DPMs are developed and a correlation analysis is fulfilled with the existing vulnerability relations.

Determination of lateral strength and ductility characteristics of existing mid-rise RC buildings in Turkey

  • Ucar, Taner;Merter, Onur;Duzgun, Mustafa
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.467-485
    • /
    • 2015
  • This paper presents a comprehensive work on determination of yield base shear coefficient and displacement ductility factor of three to eight story actual reinforced concrete buildings, instead of using generic frames. The building data is provided by a walkdown survey in different locations of the pilot areas. Very detailed three dimensional models of the selected buildings are generated by using the data provided in architectural and reinforcement projects. Capacity curves of the buildings are obtained from nonlinear static pushover analyses and each capacity curve is approximated with a bilinear curve. Characteristic points of capacity curve, the yield base shear capacity, the yield displacement and the ultimate displacement capacity, are determined. The calculated values of the yield base shear coefficients and the displacement ductility factors for directions into consideration are compared by those expected values given in different versions of Turkish Seismic Design Code. Although having sufficient lateral strength capacities, the deformation capacities of these typical mid-rise reinforced concrete buildings are found to be considerably low.

Combining in-plane and out-of-plane behaviour of masonry infills in the seismic analysis of RC buildings

  • Manfredi, V.;Masi, A.
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.515-537
    • /
    • 2014
  • Current seismic codes (e.g. the NTC08 Italian code and the EC8 European code) adopt a performance-based approach for both the design of new buildings and the assessment of existing ones. Different limit states are considered by verifying structural members as well as non structural elements and facilities which have generally been neglected in practice. The key role of non structural elements on building performance has been shown by recent earthquakes (e.g. L'Aquila 2009) where, due to the extensive damage suffered by infills, partitions and ceilings, a lot of private and public buildings became unusable with consequent significant socio-economic effects. Furthermore, the collapse of infill panels, particularly in the case of out-of-plane failure, represented a serious source of risk to life safety. This paper puts forward an infill model capable of accounting for the effects arising from prior in-plane damage on the out-of-plane capacity of infill panels. It permits an assessment of the seismic performance of existing RC buildings with reference to both structural and non structural elements, as well as of their mutual interaction. The model is applied to a building type with RC framed structure designed only to vertical loads and representative of typical Italian buildings. The influence of infill on building performance and the role of the out-of-plane response on structural response are also discussed.

Improvement of Spectral Displacement-Based Damage State Criteria of Existing Low-Rise, Piloti-Type Buildings (기존 저층 필로티 건물의 스펙트럼 변위 기반 손상도 기준 개선)

  • Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.201-211
    • /
    • 2021
  • The Ministry of the Interior and Safety in Korea developed seismic fragility function for various building types in 2009. Damage states for most building types were determined by structural analyses of sample models and foreign references because actual cases damaged by earthquakes rarely exist in Korea. Low-rise, piloti-type buildings showed severe damage by brittle failure in columns due to insufficient stirrup details in the 2017 Pohang earthquake. Therefore, it is necessary to improve damage state criteria for piloti-type buildings by consulting actual outcomes from the earthquake. An analytical approach was conducted by developing analysis models of sample buildings reflecting insufficient stirrup details of columns to accomplish the purpose. The result showed that current spectral displacements of damage states for piloti-type buildings might be too large to estimate actual fragility. When the brittle behavior observed in the earthquake is reflected in the analysis model, one-fourth through one-sixth of current spectral displacements of damage states may be appropriate for existing low-rise, piloti-type buildings.

An Investigation on the Existing Literature to Prevent Fire Spread of High-rise Buildings (고층 건축물의 화재확대방지를 위한 기존 문헌 조사)

  • Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.102-103
    • /
    • 2021
  • In Korea, starting with the Busan residential-commercial fire in 2010, the frequency of fire expansion in high-rise buildings has been continuously increasing. In the case of such large-scale fires, most of the fires generated from the inside tend to expand to the upper floors by riding the exterior material or exterior wall panels through the process of being ejected to the outside. It has been revised so that combustible exterior materials cannot be used in buildings. However, due to the legal fluoride level, the fire risk of high-rise buildings is still high, such as the case of a 33-story residential-commercial fire in Ulsan. In order to prevent such fire expansion, it is considered that it is necessary to first understand the nature of the fire occurring inside and the mechanism of the fire expansion in the upper floor. The purpose of this study is to propose improvements in domestic fire safety design through a review of existing literature to prevent fire expansion of high-rise buildings.

  • PDF

Development of an End-use Analysis Tool for Existing Buildings Based on Energy Billing Data (고지데이터 기반 기존 건축물의 용도별 에너지사용 현황분석 툴 개발)

  • Kong, Dong-Seok;Park, Jung-Min;Jang, Yong-Sung;Lee, Keon-Ho;Huh, Jung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.3
    • /
    • pp.128-136
    • /
    • 2015
  • Reducing the building energy consumption has become one of the most important issues. However, the current engineering and technological involvement in energy analysis has been relatively low in the existing buildings. In the existing buildings, end-use analysis must be accompanied to calculate the exact amount in energy savings and such analysis should be conducted based on the energy billing data or measurement data by calibration process. Mostly, detailed energy simulation programs have been proposed for the analysis but, it is difficult to utilize them due to realistic problems. In this paper, we developed an end-use analysis tool that have input function for energy audit data and two case studies were conducted in the real-life office buildings located in Seoul, Korea. Mean Bias Error (MBE) and Coefficient of Variation of Root-Mean- Squreaed-Error (CV(RMSE)) are used for the criteria of comparison. Each index was calculated by using monthly utility bills of electricity and gas consumption. Results showed that MBE and CV (RMSE) represented with acceptable values of -0.1% and 5.7% respectively.

The Energy Saving Effect and Economic Assessment of Office Building according to the Building Envelope Remodeling (사무소 건물의 외피 리모델링에 따른 에너지절감효과 및 경제성 분석)

  • Choi, Seon woo;Kim, Ji Yeon;Park, Hyo soon;Kim, Jun Tae
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • The Korean government has introduced building regulations with improved energy conservation measures, including higher insulation levels for building envelope. However, there are many existing buildings that tend to consume more energy for heating and cooling than new buildings, as they were built under the former regulations with relatively higher U-values of walls and glazing. In order to improve energy efficiency in existing buildings, green remodelling of building envelope and building services are required. For existing buildings, building services improvements have been achieved through energy service company(ESCO), but much attention has not been paid to building envelope improvements with various reasons, such as uncertainty of energy saving effect design issues and costs. The aim of this study is to evaluate the impact of building envelope improvements in a typical commercial building on its heating and cooling energy loads. The results show that the improvement of glazing with lower U-values has the highest energy saving effects, followed by wall, roof and floor, under the condition of same level of insulation improvements. However, high insulated glazing increased LCC because of higher initial investment costs.

Selecting of the Energy Performance Diagnosis Items through the Sensitivity Analysis of Existing Buildings (민감도 분석을 통한 기존건축물의 에너지성능 진단항목 선별)

  • Kong, Dong-Seok;Chang, Yong-Sung;Huh, Jung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.354-361
    • /
    • 2015
  • The building energy audit is an important process when collecting basic information for improving the energy performance of existing buildings. Audit parameters should be associated with the energy performance of the building. Such audit parameters will vary according to an individual building's characteristics and energy consumption patterns, but most building energy audits are performed in the same way. The sensitivity analysis (SA) is a statistical method to quantify the correlation between inputs and outputs that can determine which input is influential to which output. Therefore, an SA can identify influential parameters when applied to building energy analysis. In this paper, we adopted the Morris method to identify building energy audit parameters and performed a Monte Carlo simulation for uncertainty analysis. As a result, this method was able to identify an influential parameter for building energy audits and reduce uncertainty in energy consumption in buildings.

AUTOMATIC AS-IS BIM EXTRACTION FOR SUSTAINABLE SIMULATION OF BUILT ENVIRONMENTS

  • Chao Wang;Yong K. Cho
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.47-51
    • /
    • 2013
  • Existing buildings now represent the greatest opportunity to improve building energy efficiency. Building performance analysis is becoming increasingly important because decision makers can have a better visualization of their building's performance and quickly make the solution for improving building energy efficiency and reducing environmental impacts. Nowadays, building information models (BIMs) have been widely created during the design phase of new buildings, and it can be easily imported to third party software to conduct various analyses. However, a BIM is not always available for all existing buildings. Even if a BIM is available during the design and construction phases, it is very challenging to keep updating it while a building is aged. A manual process to create or update a BIM is very time consuming and labor intensive. A laser scanning technology has been a popular tool to create as-is BIM. However it still needs labor-intensive manual processes to create a BIM out of point clouds. This paper introduces automatic as-is simplified BIM creation from point clouds for energy simulations. A framework of decision support system that can assist decision makers on retrofits for existing buildings is introduced as well. A case study on a residential house was tested in this study to validate the proposed framework, and the technical feasibility of the developed system was positively demonstrated.

  • PDF

Torsional effects due to concrete strength variability in existing buildings

  • De Stefano, M.;Tanganelli, M.;Viti, S.
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.379-399
    • /
    • 2015
  • Existing building structures can easily present material mechanical properties which can largely vary even within a single structure. The current European Technical Code, Eurocode 8, does not provide specific instructions to account for high variability in mechanical properties. As a consequence of the high strength variability, at the occurrence of seismic events, the structure may evidence unexpected phenomena, like torsional effects, with larger experienced deformations and, in turn, with reduced seismic performance. This work is focused on the torsional effects related to the irregular stiffness and strength distribution due to the concrete strength variability. The analysis has been performed on a case-study, i.e., a 3D RC framed 4 storey building. A Normal distribution, compatible to a large available database, has been taken to represent the concrete strength domain. Different plan layouts, representative of realistic stiffness distributions, have been considered, and a statistical analysis has been performed on the induced torsional effects. The obtained results have been compared to the standard analysis as provided by Eurocode 8 for existing buildings, showing that the Eurocode 8 provisions, despite not allowing explicitly for material strength variability, are conservative as regards the estimation of structural demand.