본 연구는 언택트시대의 배움공동체에 대한 사회적 담론이 어떠한지 살펴보고, 팬데믹이라는 사회적 상황 속에서 아동을 위한 배움공동체가 나아가야할 방향에 대해 논의해 보고자한다. 이를 위해 2020년 1월 20일부터 2021년 1월 20일까지 1년 동안의 빅데이터를 '언택트+배움공동체'라는 키워드로 인터넷 포털사이트(구글, 다음, 네이버 등의 뉴스)에서 데이터를 수집 및 분석하였다. 분석결과, 단어빈도 및 네트워크분석에서 '마을교육공동체', '운영', '활동', '코로나19', '지원', '온라인' 등의 단어가 언택트시대의 배움공동체와 관련이 높은 것으로 도출되었다. 이는 배움공동체 내에서 마을의 교육공동체가 주축이 되어 코로나19라는 상황 속에서도 마을 활동가와 주민협의회 등이 뜻을 모아 코로나19로 멈춰진 아동의 일상을 회복하고 관계 회복을 위한 노력을 온라인 매체를 활용하여 지원 해줄 수 있다는 것을 보여준다. 결론적으로 단어빈도 분석을 통해 배움공동체와 관련된 핵심키워드를 파악하고 배움공동체에 대한 사회적 경향을 살펴보았다는데 의의가 있으며, 코로나19의 장기화로 아동의 공적 돌봄·교육의 틈새와 한계에 대한 대안으로 배움공동체의 도입 및 활성화를 위한 기초자료로써 시사점을 가진다
본 연구는 비대면 마케팅의 한 방편으로 소비자들이 제품을 구매하기 위한 상품정보를 인지하는 과정에서 증강현실 경험이 재래적 어플리케이션을 통한 구매의도에 비해 어떠한 영향을 미치는가를 실험하여 향후 제품브랜드의 앱 개발에 필요한 증강현실 도입의 유효성에 대한 근거를 확보하고자 한다. 연구목적에 대한 검증을 위하여 문헌적 연구과 실증적 연구를 병행하였으며 이를 측정하기 위하여 증강현실 기능을 구현한 국내 테이블 웨어 브랜드 '오덴세'의 애플리케이션을 제작하여 실험도구로 사용하였다. 조사모형은 사용자 표본집단을 대상으로 애플리케이션을 이용한 후 그 경험을 설문에 응답하도록 하였다. 연구결과, 지각된 유용성과 용이성, 즐거움이 구매의도에 미치는 영향에서는 모든 요인에서 유의미한 결과가 도출되었으며, 일반적 특성에서 성별, 연령, 인터넷 쇼핑 이용시간에 따라 요인간 몇 가지 유의한 차이들이 발견되었다. 결론적으로 제품의 정보인지 단계에서 증강현실기능이 도입된 매체의 사용자 경험은 전통적인 애플리케이션의 사용자 경험에 비해서 구매에 긍정적인 효과를 미친다는 결과를 도출하였다.
도시화로 인해 토양의 불투수면적이 증가함에 따라 도시의 물순환 체계가 악화되었다. 이러한 물 문제를 해결하기 위해 설치하는 저영향 개발(Low Impact Development, LID) 시설의 기존 가이드라인이나 선행 연구에서는 공학적 측면이 조경적 측면보다 중시되는 것이 실정이다. 본 연구에서는 식생체류지의 강우 유출과 오염물질 저감 능력에서 식생이 끼치는 영향과 식재의 경제적인 측면을 파악하여 오염물질 저감에 공학적으로 그리고 조경적으로 가장 적합한 식생체류지 설계 모델을 제시하고자 하였다. 모니터링 대상이 되는 전주 서곡 공원의 식생체류지 인공 강우 모니터링 결과와 식생의 강우 유출 및 오염물질 저감 성능에 관한 문헌 조사를 바탕으로 해당 지역 식생 종별 오염물질 및 탄소 저감 효율을 분석한 결과, 비용 대비 오염 저감 효율이 가장 좋은 식종은 부처꽃이며 탄소 저감에 탁월한 식생은 갯버들이었다. 하지만 이 두 가지 식생만으로 설계하고자 한다면 생물 다양성과 같은 부분에서 위험을 안고 갈 수밖에 없다. 다양한 식재를 고려할 시, 부처꽃과 같은 초본류는 고사 및 병해충에 의해 교체될 수 있기에 초기 식재 비용은 높지만 유지관리 측면에서 유리한 목본식물인 갯버들을 주변 환경과 여건에 따라 혼합 식재하는 방안도 필요하다. 본 연구에서 도출한 결론을 토대로 LID 시설 식생의 종별 오염 저감과 탄소저장량을 고려 시 참고자료가 될 수 있다.
The color image of the brand comes first and is an important visual element that leads consumers to the consumption of the product. To express more effectively what the brand wants to convey through design, the printing market is striving to print accurate colors that match the intention. In 'offset printing' mainly used in printing, colors are often printed in CMYK (Cyan, Magenta, Yellow, Key) colors. However, it is possible to print more accurate colors by making ink of the desired color instead of dotting CMYK colors. The resulting ink is called 'spot color' ink. Spot color ink is manufactured by repeating the process of mixing the existing inks. In this repetition of trial and error, the manufacturing cost of ink increases, resulting in economic loss, and environmental pollution is caused by wasted inks. In this study, a deep learning algorithm to predict printed spot colors was designed to solve this problem. The algorithm uses a single DNN (Deep Neural Network) model to predict printed spot colors based on the information of the paper and the proportions of inks to mix. More than 8,000 spot color ink data were used for learning, and all color was quantified by dividing the visible light wavelength range into 31 sections and the reflectance for each section. The proposed algorithm predicted more than 80% of spot color inks as very similar colors. The average value of the calculated difference between the actual color and the predicted color through 'Delta E' provided by CIE is 5.29. It is known that when Delta E is less than 10, it is difficult to distinguish the difference in printed color with the naked eye. The algorithm of this study has a more accurate prediction ability than previous studies, and it can be added flexibly even when new inks are added. This can be usefully used in real industrial sites, and it will reduce the attempts of the operator by checking the color of ink in a virtual environment. This will reduce the manufacturing cost of spot color inks and lead to improved working conditions for workers. In addition, it is expected to contribute to solving the environmental pollution problem by reducing unnecessarily wasted ink.
본(本) 논문(論文)에서는 충돌(衝突)이나 중량물(重量物) 낙하(落下)등에 의한 사고하중(事故荷重)을 받는 해양구조물(海洋構造物)의 원통부재(圓筒部材)에 대한 손상변형거동(損傷變形擧動)을 실용적(實用的)으로 추정(推定)할 수 있는 새로운 손상예측(損傷豫測) 모델을 제안(提案)한다. 본(本) 논문(論文)은 하중속도(荷重速度)가 비교적(比較的) 느리고 준정적(準靜的) 문제(問題)로서 다룰수 있는 경우만을 대상(對象)으로 하고 있다. 본연구(本硏究)에서 취급하는 원통부재(圓筒部材)는 양단단순(兩端單純) 지지(支持)되어 있고 축방향(軸方向)의 변위(變位)는 구속(拘束)되어 있으며, 하중(荷重)은 부재(部材)의 중앙위치(中央位置)에서 횡방향(橫方向)으로 작용(作用)한다고 가정(假定)한다. 지금까지의 연구성과(硏究成果) 및 본(本) 연구(硏究)에서 직접(直接) 수행(遂行)한 실험결과(實驗結果)를 바탕으로 사고하중작용시(事故荷重作用時)의 원통부재(圓筒部材)에 대한 손상변형거동(損傷變形擧動)을 상세(詳細)히 파악(把握)하고, 국부(局部) Dent 손상(損傷) 및 전체적(全體的)인 굽힘 처짐의 상관효과(相關效果)를 고려(考慮)한 하중-손상변형(荷重-損傷變形) 관계식(關係式)을 도출(導出)하였으며, 실제적(實際的)인 원통부재(圓筒部材)에 대한 실험결과(實驗結果)와 본연구(本硏究)에서 제안(提案)한 예측(豫測) 모델에 의한 추정결과(推定結果)는 잘 대응(對應)하고 있다는 것을 확인(確認)하였다. 특(特)히, 이 같은 하중상태하(荷重狀態下)에서의 실제부재(實際部材)의 손상변형거동(損傷變形擧動)에 대하여는 국부(局部) Dent 손상(損傷)과 전체적(全體的)인 굽힘처짐의 상관효과(相關效果)가 매우 크다는 것을 알았으며, 본예측(本豫測) 모델은 이들의 효과(效果)도 잘 나타내고 있다.
최근 지진 발생 빈도가 증가하고 있는 반면 국내 지진 대응 체계는 취약한 현실에서, 본 연구의 목적은 통계분석 기법과 머신러닝 기법을 활용한 공간분석을 통해 건물의 지진취약도를 비교분석 하는 것이다. 통계분석 기법을 활용한 결과, 최적화척도법을 활용해 개발된 모델의 예측정확도는 약 87%로 도출되었다. 머신러닝 기법을 활용한 결과, 분석된 4가지 방법 중, Random Forest의 정확도가 Train Set의 경우 94%, Test Set의 경우 76.7%로 가장 높아, 최종적으로 Random Forest가 선정되었다. 따라서, 예측정확도는 통계분석 기법이 약 87%, 머신러닝 기법이 76.7%로, 통계분석 기법의 예측정확도가 더 높은 것으로 분석되었다. 최종 결과로, 건물의 지진취약도는 분석된 건물데이터 총 22,296개 중, 1,627(0.1%)개의 건물데이터는 통계분석 기법 사용 시 더 위험하다고 도출되었고, 10,146(49%)개의 건물데이터는 동일하게 도출되었으며, 나머지 10,523(50%)개의 건물데이터는 머신러닝 기법 사용 시 더 위험하게 도출되었다. 기존 통계분석 기법에 첨단 머신러닝 기법활용결과가 추가로 비교검토 됨으로써 공간분석 의사결정에 있어서, 좀더 신뢰도가 높은 지진대응책 마련에 도움이 되길 기대한다.
연구목적:현재 국내 소방시설설계의 경우 낮은 설계단가와 업체 간 과열 경쟁으로 고급 인력에 대한 확보가 어려워 건축물의 화재안전성능을 향상시키는데 한계가 있다. 이에 이러한 문제를 해소하고 선도적인 소방엔지니어링 기술을 확보하기 위해 AI 기반 소방설계솔루션을 연구하였다. 연구방법: 기존 소방설계에 많이 사용되는 AutoCAD를 통해 기본 설계 및 실시 설계에 필요한 절차를 프로세스화 하고 YOLO v4 객체 인식 딥러닝 모델을 통해 AI기술을 활용하였다. 연구결과:소방시설에 대한 설계프로세스를 통해 설비의 결정과 도면 설계 자동화를 진행하였다. 또한 문 및 기둥에 대한 이미지를 학습시켜 인공지능이 해당 부분을 인식하여 경계구역 선정, 배관 및 소방시설을 설치하는 기능을 구현하였다. 결론:인공지능 기술을 기반으로 건축물 화재방호 설비에 대한 기본 및 실시 설계 도면 작성 시 인적 및 물적 자원을 저감시킬 수 있을 것으로 확인되었으며 선행적인 기술 개발을 통해 인공지능 기반 소방설계에 기술력을 확보하였다.
본 연구의 목적은 신호교차로의 적정황색신호시간 산정을 위한 것으로, 황색신호시간 산정 시 접근속도와 교차로 폭에 따른 연관성을 알아보고 신호 운영에 따라 변화되는 교차로 내 상충과 딜레마구간을 최소화하여 교차로 운영 안전성을 확보하는 데 있다. 이를 위해 5개 교차로의 6824건의 자료를 수집 분석하였다. 주요 연구결과는 첫째, 차로별 개별차량 접근속도를 분석하고 방향별 상충을 고려해 교차로 폭을 정의하였다. 둘째, 기존 산식의 문제점을 보완한 접근속도와 상충 지점 기반 다중회귀모형식을 개발하였다. 셋째, 개발 산정식을 통해 접근속도와 교차로 폭에 따른 적정황색신호시간 적용 기준표를 제시하였으며, 와의 관계를 이용해 황색신호시간과 딜레마구간을 교차 분석할 수 있는 산정표를 제시하여 황색신호시간 변화에 따른 딜레마 길이의 안전성을 판단하는 방안을 제시하였다.
최근 ChatGPT 등 거대언어모델(Large Language Models)의 활용은 대화형상거래, 모바일금융 서비스 등 다양한 분야에서 사용이 증가하고 있다. 그러나 주로 기존 문서를 학습하여 만들어진 거대언어모델은 문서에 내재된 인간의 다양한 편향까지도 학습할 수 있다. 그럼에도 불구하고 거대언어모델에 편향과 차별의 양상에 대한 비교연구는 거의 이루어지지 않았다. 이에 본 연구의 목적은 거대언어모델안에 9가지 차별(Age, Disability status, Gender identity, Nationality, Physical appearance, Race ethnicity, Religion, Socio-economic status, Sexual orientation)의 존재유무 또는 그 정도를 점검하고 발전 방안을 제안하는 것이다. 이를 위해 차별 양상을 특정하기 위한 도구인 BBQ (Bias Benchmark for QA)를 활용하여 ChatGPT, GPT-3, Bing Chat 등 세가지 거대언어모델을 대상으로 비교하였다. 평가 결과 거대언어모델에 적지 않은 차별적 답변이 관찰되었으며, 그 양상은 거대언어모델에 따라 차이가 있었다. 특히 성차별, 인종차별, 경제적 불평등 등 전통적인 인공지능 윤리 이슈가 아닌 노인차별, 장애인차별에서 문제점이 노출되어, 인공지능 윤리의 새로운 관점을 찾을 수 있었다. 비교 결과를 기반으로 추후 거대언어모델의 보완 및 발전 방안에 대해 기술하였다.
강우 데이터는 습지관리, 수문모의, 수자원 관리와 같은 다양한 분야에서 활용되는 필수 입력자료 중 하나이다. 강우 데이터를 활용하여 효율적인 수자원관리를 위해서는 기본적으로 데이터의 결측률을 최소화 시킴으로써 최대한 많은 데이터를 확보하는 것이 필수적이다. 또한 미계측 지역에 대한 강우 데이터를 확보한다면 보다 효율적인 수문모의가 가능하다. 그러나 결측 강우 데이터는 주로 통계학적 기법에 의해 추정되어 왔다. 본 연구의 목적은 데이터 간의 상관관계를 기반으로 새로운 데이터를 예측할 수 있는 머신러닝 알고리즘을 활용하여 결측 강우 데이터를 복원할 수 있는 새로운 방법을 제안하고자 한다. 또한, 기존의 통계적 방법들과 비교하여 머신러닝 기법의 결측 강우 데이터 복원을 위한 활용가치를 평가하고자 한다. 평가를 위해 대표적인 머신러닝 알고리즘인 Artificial Neural Network (ANN)과 Random Forest (RF)을 적용하였다. 강우의 발생 유무를 분류하는 성능은 RF 알고리즘이 ANN 알고리즘보다 강우 발생유무의 분류 정확도가 높은 것으로 나타났다. 분류 모형의 평가 지표인 F1-score나 Accuracy값이 RF는 0.80, 0.77인 반면에, ANN은 0.76, 0.71로 계산되었다. 또한 강우량을 추정하는 성능 역시 RF가 ANN 알고리즘보다 보다 높은 정확도를 보였다. RF과 ANN 알고리즘의 RMSE은 2.8mm/day과 2.9mm/day이고, R2값은 0.73, 0.68으로 계산되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.