• Title/Summary/Keyword: Exhibit Design

Search Result 540, Processing Time 0.031 seconds

Systolic Arrays for Lattice-Reduction-Aided MIMO Detection

  • Wang, Ni-Chun;Biglieri, Ezio;Yao, Kung
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.481-493
    • /
    • 2011
  • Multiple-input multiple-output (MIMO) technology provides high data rate and enhanced quality of service for wireless communications. Since the benefits from MIMO result in a heavy computational load in detectors, the design of low-complexity suboptimum receivers is currently an active area of research. Lattice-reduction-aided detection (LRAD) has been shown to be an effective low-complexity method with near-maximum-likelihood performance. In this paper, we advocate the use of systolic array architectures for MIMO receivers, and in particular we exhibit one of them based on LRAD. The "Lenstra-Lenstra-Lov$\acute{a}$sz (LLL) lattice reduction algorithm" and the ensuing linear detections or successive spatial-interference cancellations can be located in the same array, which is considerably hardware-efficient. Since the conventional form of the LLL algorithm is not immediately suitable for parallel processing, two modified LLL algorithms are considered here for the systolic array. LLL algorithm with full-size reduction-LLL is one of the versions more suitable for parallel processing. Another variant is the all-swap lattice-reduction (ASLR) algorithm for complex-valued lattices, which processes all lattice basis vectors simultaneously within one iteration. Our novel systolic array can operate both algorithms with different external logic controls. In order to simplify the systolic array design, we replace the Lov$\acute{a}$sz condition in the definition of LLL-reduced lattice with the looser Siegel condition. Simulation results show that for LR-aided linear detections, the bit-error-rate performance is still maintained with this relaxation. Comparisons between the two algorithms in terms of bit-error-rate performance, and average field-programmable gate array processing time in the systolic array are made, which shows that ASLR is a better choice for a systolic architecture, especially for systems with a large number of antennas.

Design of UWB CMOS Low Noise Amplifier Using Inductor Peaking Technique (인덕터 피킹기법을 이용한 초광대역 CMOS 저잡음 증폭기 설계)

  • Sung, Young-Kyu;Yoon, Kyung-Sik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.158-165
    • /
    • 2013
  • In this paper, a new circuit topology of an ultra-wideband (UWB) 3.1-10.6GHz CMOS low noise amplifier is presented. The proposed UWB low noise amplifier is designed utilizing RC feedback and LC filter networks which can provide good input impedance matching. In this design, the current-reused topology is adopted to reduce the power consumption and the inductor-peaking technique is applied for the purpose of bandwidth extension. The performance results of this UWB low noise amplifier simulated in $0.18-{\mu}m$ CMOS process technology exhibit a power gain of 14-14.9dB, an input matching of better than -10.8dB, gain flatness of 0.9dB, and a noise figure of 2.7-3.3dB in the frequency range of 3.1-10.6GHz. In addition, the input IP3 is -5dBm and the power consumption is 12.5mW.

Development of interactive children's museum contents for online-offline experience and research on satisfaction level (온·오프라인 연계 체험형 어린이 박물관 콘텐츠 개발 및 만족도 조사 연구)

  • LEE, JI-EUN;LEE, SANG-WON
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.59-65
    • /
    • 2021
  • This study intends to find a positive effect on the learning of elementary school students by developing the exhibition contents of on-offline museum. This on-offline museum contents were combined with existing exhibit types and direct experience elements, and the theory of [blended learning]. Through this study, analyzing the limitations of existing online museum and finding with experiment to see if the new contents had a learning effect compared to the existing online museum. As a result of the experimental study, the content with a [direct experience] was counted as a high satisfaction and frequency index, and the [play] and [experience] type of direct experience contents showed higher satisfaction than the indirect experience type contents. Through this study, we want to provide new implications and development possibilities in the development of contents that online museums can provide, and to promote various effects on children's education.

Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability

  • Xing, Haofeng;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.353-362
    • /
    • 2019
  • Soil-rock mixture (S-RM) is an inhomogeneous geomaterial that is widely encountered in nature. The mechanical and physical properties of S-RM are important factors contributing towards different deformation characteristics and unstable modes of the talus slope. In this paper, the equivalent substitution method was employed for the preparation of S-RM test samples, and large-scale triaxial laboratory tests were conducted to investigate their mechanical parameters by varying the water content and confining pressure. Additionally, a simplified geological model based on the finite element method was established to compare the stability of talus slopes with different strength parameters and in different excavation and support processes. The results showed that the S-RM samples exhibit slight strain softening and strain hardening under low and high water content, respectively. The water content of S-RM also had an effect on decreasing strength parameters, with the decrease in magnitude of the cohesive force and internal friction angle being mainly influenced by the low and high water content, respectively. The stability of talus slope decreased with a decrease in the cohesion force and internal friction angle, thereby creating a new shallow slip surface. Since the excavation of toe of the slope for road construction can easily cause a landslide, anti-slide piles can be used to effectively improve the slope stability, especially for shallow excavations. But the efficacy of anti-slide piles gradually decreases with increasing water content. This paper can act as a reference for the selection of strength parameters of S-RM and provide an analysis of the instability of the talus slope.

Design of a Novel 3D Printed Harmonic Drive and Analysis of its Application (3D 프린팅 기법을 이용한 하모닉 드라이브(Harmonic Drive) 설계 및 응용 분석)

  • Kim, Sang-Hyun;Byeon, Chang-Sup;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.38 no.1
    • /
    • pp.27-31
    • /
    • 2022
  • Harmonic drives have attracted increasing attention with the development of materials, parts, and related equipment. Harmonic drives exhibit high deceleration, high accuracy, and light weight. The stiffness of flexible splines according to the radial load is studied using a commercial FEM program to design the structure of the flexible spline and finite element to improve the weight and price competitiveness of harmonic drives. In addition, several studies have measured and compared friction coefficients based on 3D printed tread patterns. However, owing to the characteristics of plastic materials, a decrease in stiffness in the radial direction is inevitable. To prevent a decrease in stiffness in the radial direction, we designed and manufactured flex splines with a wrinkle shape. Through structural analysis, the reaction force and stiffness in the radial direction were determined. In addition, the maximum angle of the mound was derived by theoretical calculations, and the performance of the harmonic drive was compared with the results obtained in the mound experiment. Structural analysis shows that the shape of wrinkles decreased the stress and reaction force and increased the safety factor in comparison with that of the circular shape. During performance verification through continuous experiments, the developed harmonic drive showed continuous performance similar to that of an actual tank model. It is expected that the flex spline with a compliant spring and wrinkle shape will prevent a decrease in the radial stiffness.

An Innovative shear link as damper: an experimental and numerical study

  • Ghamari, Ali;Kim, Young-Ju;Bae, Jaehoon
    • Steel and Composite Structures
    • /
    • v.42 no.4
    • /
    • pp.539-552
    • /
    • 2022
  • Concentrically braced frames (CBFs) possess high stiffness and strength against lateral loads; however, they suffer from low energy absorption capacity against seismic loads due to the susceptibility of CBF diagonal elements to bucking under compression loading. To address this problem, in this study, an innovative damper was proposed and investigated experimentally and numerically. The proposed damper comprises main plates and includes a flange plate angled at θ and a trapezius-shaped web plate surrounded by the plate at the top and bottom sections. To investigate the damper behaviour, dampers with θ = 0°, 30°, 45°, 60°, and 90° were evaluated with different flange plate thicknesses of 10, 15, 20, 25 and 30 mm. Dampers with θ = 0° and 90° create rectangular-shaped and I-shaped shear links, respectively. The results indicate that the damper with θ = 30° exhibits better performance in terms of ultimate strength, stiffness, overstrength, and distribution stress over the damper as compared to dampers with other angles. The hysteresis curves of the dampers confirm that the proposed damper acts as a ductile fuse. Furthermore, the web and flange plates contribute to the shear resistance, with the flange carrying approximately 80% and 10% of the shear force for dampers with θ = 30° and 90°, respectively. Moreover, dampers that have a larger flange-plate shear strength than the shear strength of the web exhibit behaviours in linear and nonlinear zones. In addition, the over-strength obtained for the damper was greater than 1.5 (proposed by AISC for shear links). Relevant relationships are determined to predict and design the damper and the elements outside it.

Design and Optimization of 4.5 kV 4H-SiC MOSFET with Current Spreading Layer (Current Spreading Layer를 도입한 4.5 kV 4H-SiC MOSFET의 설계 및 최적화)

  • Young-Hun, Cho;Hyung-Jin, Lee;Hee-Jae, Lee;Geon-Hee, Lee;Sang-Mo, Koo
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.728-735
    • /
    • 2022
  • In this work, we investigated a high-voltage (~4.5 kV) 4H-SiC power DMOSFET with modifications of current spreading layer (CSL), which was introduced below the p-well region for low on-resistance. These include the following: 1) a thickness of CSL (TCSL) from 0 um to 0.9 um; 2) a doping concentration of CSL (NCSL) from 1×1016 cm-3 to 5×1016 cm-3. The design is optimized using TCAD 2D-simulation, and we found that CSL helps to reduce specific on-resistance but also breakdown voltage. The resulting structures exhibit a specific on-resistance (Ron,sp) of 59.61 mΩ·cm2, a breakdown voltage (VB) of 5 kV, and a Baliga's Figure of Merit (BFOM) of 0.43 GW/cm2.

Statistical optimization of phytol and polyunsaturated fatty acid production in the Antarctic microalga Micractinium variabile KSF0031

  • Kim, Eun Jae;Chae, Hyunsik;Koo, Man Hyung;Yu, Jihyeon;Kim, Hyunjoong;Cho, Sung Mi;Hong, Kwang Won;Lee, Joo Young;Youn, Ui Joung;Kim, Sanghee;Choi, Han-Gu;Han, Se Jong
    • ALGAE
    • /
    • v.37 no.2
    • /
    • pp.175-183
    • /
    • 2022
  • Polar microorganisms produce physiologically active substances to adapt to harsh environments, and these substances can be used as biomedical compounds. The green microalga Micractinium variabile KSF0031, which was isolated from Antarctica, produced phytol, a natural antimicrobial agent. Furthermore, several polyunsaturated fatty acids (PUFAs), including omega-3, exhibit antioxidant properties. Here statistical methods (Plackett-Burman design and Box-Behnken design) were used to optimize the culture medium of KSF0031 to improve biomass production, and K2HPO4, MgSO4·7H 2O, and ammonium ferric citrate green (AFCg) were selected as significant components of the culture medium. Changes in the concentration of K2HPO4 and MgSO4·7H 2O as positive factors and AFCg as a negative factor affected cell growth to a remarkable degree. The biomass production in a 100 L culture using the optimized medium for 24 d at 18℃ was improved by 37.5% compared to that obtained using the original BG-11 medium. The quantities of PUFAs and phytol obtained were 13 mg g-1 dry cell weight (DCW) and 10.98 mg g-1 DCW, which represent improved yields of 11.70% and 48.78%, respectively. The results of this study could contribute to an improved production of phytol and fatty acids from Antarctic microalgae in the biomedical industry.

A Study on the Utilization of Photo Contents based Electronic Cultural Atlas (전자문화지도 기반 사진 콘텐츠 활용에 관한 연구)

  • Lee, Dong-Yul;Kang, Ji-Hoon;Moon, Sang-Ho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.2
    • /
    • pp.315-323
    • /
    • 2015
  • As a form of convergence studies, many studies on electronic cultural atlas have been performed. In this paper, our objective is to design an electronic cultural atlas for utilizing photo contents based on display and sharing effect. This is one of the ways to effectively use various photo contents. Through electronic cultural atlas, photo contents are recognized as an object that contains a lot of information. To do this, we design an electronic cultural atlas for utilizing photo contents, and investigate the utilization differences through comparison with existing systems. In detail, we examine the limits of the traditional photo exhibition method, and research on usability of users when an electronic cultural atlas was used to exhibit and share the photos contents efficiently.

Dynamic analysis of nanotube-based nanodevices for drug delivery in sports-induced varied conditions applying the modified theories

  • Shaopeng Song;Tao Zhang;Zhiewn Zhui
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.487-502
    • /
    • 2023
  • In the realm of nanotechnology, the nonlocal strain gradient theory takes center stage as it scrutinizes the behavior of spinning cantilever nanobeams and nanotubes, pivotal components supporting various mechanical movements in sport structures. The dynamics of these structures have sparked debates within the scientific community, with some contending that nonlocal cantilever models fail to predict dynamic softening, while others propose that they can indeed exhibit stiffness softening characteristics. To address these disparities, this paper investigates the dynamic response of a nonlocal cantilever cylindrical beam under the influence of external discontinuous dynamic loads. The study employs four distinct models: the Euler-Bernoulli beam model, Timoshenko beam model, higher-order beam model, and a novel higher-order tube model. These models account for the effects of functionally graded materials (FGMs) in the radial tube direction, giving rise to nanotubes with varying properties. The Hamilton principle is employed to formulate the governing differential equations and precise boundary conditions. These equations are subsequently solved using the generalized differential quadrature element technique (GDQEM). This research not only advances our understanding of the dynamic behavior of nanotubes but also reveals the intriguing phenomena of both hardening and softening in the nonlocal parameter within cantilever nanostructures. Moreover, the findings hold promise for practical applications, including drug delivery, where the controlled vibrations of nanotubes can enhance the precision and efficiency of medication transport within the human body. By exploring the multifaceted characteristics of nanotubes, this study not only contributes to the design and manufacturing of rotating nanostructures but also offers insights into their potential role in revolutionizing drug delivery systems.