• Title/Summary/Keyword: Exhibit Design

Search Result 534, Processing Time 0.023 seconds

Hydro-forming Process Development of Automotive AA6061 Rear Sub-frame Side Member by Computer Aided Engineering (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 AA6061 리어 서브-프레임 사이드멤버의 하이드로-포밍 공정 개발)

  • Kim, Kee-Joo;Kim, Jae-Hyun;Choi, Byung-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.45-49
    • /
    • 2010
  • The automotive industry has shown a growing interest in tube hydroforming during the past years. The advantages of hydroforming (less thinning, a more efficient manufacturing process, etc.) can, for instance, be combined with the high strength of extra high strength steels, which are usually less formable, to produce structural automotive components which exhibit lower weight and improved service performance. Design and production of tubular components require knowledge about tube material and forming behavior during hydroforming and how the hydroforming operation itself should be controlled. These issues are studied analytically in the present paper. In this study, the whole process of rear sub-frame parts development by tube hydroforming using AA6061 material is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Engineering) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable rear sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.

Evaluation of Failure Modes and Adhesion of DLC Films by Scratch Test (스크래치 시험을 통한 DLC 박막 파손과 밀착 특성 평가)

  • Kim, Ju Hee;Park, Chanhyung;Ahn, Hyo Sok
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.127-133
    • /
    • 2017
  • In order to characterize the adhesive properties and failure mechanisms of diamond-like carbon (DLC) films of two different thicknesses (130 nm and $1.2{\mu}m$), deposited by plasma-enhanced chemical vapor deposition on a Si substrate, scratch testing with a micro-indenter ($12.5{\mu}m$ tip radius) was performed under a linearly increasing load. These scratch tests were conducted under the same test conditions for both films. The critical load of each film was estimated from the scratch test results, based on a sharp increase in the coefficient of friction and a clear distinction of failure modes. The critical load was the basis for evaluating the adhesion strength of the films, and the $1.2{\mu}m-thick$ DLC film had superior adhesion strength. For better understanding of the failure modes, the following analyses were conducted: friction behavior and scratch tracks analysis using scanning electron microscopy, energy-dispersive spectroscopy, and 3-D profilometry. The scratch test results showed that failure modes were related to the thickness of the films. The 130 nm-thick DLC film underwent cohesive failure modes (cracks and chipping) before reaching to a gross failure stage. On the other hand, the thicker DLC film ($1.2{\mu}m-thick$) did not exhibit micro cracks before a sudden gross failure of the film together with the evidence of cracking and chipping of the Si substrate.

Design and Implementation of a Mobile Docent App for Chosun University Museum (조선대학교 박물관 모바일 도슨트 어플 설계 및 구현)

  • Chung, Hyun-Sook;Lee, Gi-Kil;Lee, Dae-Kyoung;Kim, Jeong-Min
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.121-129
    • /
    • 2018
  • The university museum is working to discover, research, and exhibit cultural artifacts as well as use them as resources of education and academic researches as one of the important organizations of the university. Current, however, university museums have the low-level usability caused by the reduction of financial and administrative supports of the university. One approach to solve this problem may be the design of mobile docent app for improving the accessibility of the museum. The app enables users get artifacts and education programs without the restriction and learn artifact-related knowledge easily. In this paper, we design and implement a new mobile docent app according to the analysis of content of the Chosun university museum as a real case study. In addition, we evaluate the functionality and usability of the proposed app by affordance-based questionnaire.

The Effects of Apparel Product Presentation on Consumer Responses in U.S. Online Retailing (의류 상품 전시와 상품에 대한 관여도가 미국 온라인 소비자에 미치는 영향)

  • Yoo, Jungmin;Lennon, Sharron
    • The Journal of Society for e-Business Studies
    • /
    • v.19 no.2
    • /
    • pp.31-51
    • /
    • 2014
  • This study examined the effect of product presentation on consumers' affective/cognitive states and purchase intention. The design of the study was a one factor(product presentation: garment presented flat vs. garment presented on models without faces vs. garment presented on models with faces) between-subject design with a moderator (involvement: high vs. low). A sample of 429 female college students participated in this online experiment. The results show the effectiveness of using a realistic human model on apparel websites. Also, consumers who are highly involved with clothing generally exhibit more positive responses than those who are less involved. Overall, these findings provide empirical support for the Stimulus-Organism-Response model and the Elaboration Likelihood Model, and contribute useful knowledge regarding website design for online apparel retailers.

Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses

  • Lee, Mi-Young;Heo, Seong-Joo;Park, Eun-Jin;Park, Ji-Man
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.312-318
    • /
    • 2013
  • PURPOSE. The aim of this study was to compare the passivity of implant superstructures by assessing the strain development around the internal tapered connection implants with strain gauges. MATERIALS AND METHODS. A polyurethane resin block in which two implants were embedded served as a measurement model. Two groups of implant restorations utilized cement-retained design and internal surface of the first group was adjusted until premature contact between the restoration and the abutment completely disappeared. In the second group, only nodules detectable to the naked eye were removed. The third group employed screw-retained design and specimens were generated by computer-aided design/computer-aided manufacturing system (n=10). Four strain gauges were fixed on the measurement model mesially and distally to the implants. The strains developed in each strain gauge were recorded during fixation of specimens. To compare the difference among groups, repeated measures 2-factor analysis was performed at a level of significance of ${\alpha}$=.05. RESULTS. The absolute strain values were measured to analyze the magnitude of strain. The mean absolute strain value ranged from 29.53 to 412.94 ${\mu}m/m$ at the different strain gauge locations. According to the result of overall comparison, the cement-retained prosthesis groups exhibited significant difference. No significant difference was detected between milled screw-retained prostheses group and cement-retained prosthesis groups. CONCLUSION. Within the limitations of the study, it was concluded that the cement-retained designs do not always exhibit lower levels of stress than screw-retained designs. The internal adjustment of a cement-retained implant restoration is essential to achieve passive fit.

Towards Characterization of Modern FPGAs: A Case Study with Adders and MIPS CPU (가산기와 MIPS CPU 사례를 이용한 현대 FPGA의 특성연구)

  • Lee, Boseon;Suh, Taewon
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.3
    • /
    • pp.99-105
    • /
    • 2013
  • The FPGA-based emulation is an essential step in ASIC design for validation. For emulation with maximal frequency, it is crucial to understand the FPGA characteristics. This paper attempts to analyze the performance characteristics of the modern FPGAs from renowned vendors, Xilinx and Altera, with a case study utilizing various adders and MIPS CPU. Unlike the common wisdom, ripple-carry adder (RCA) does not utilize the inherent carry-chain inside FPGAs when structurally designed based on 1-bit adders. Thus, the RCA shows the inferior performance to the other types of adders in FPGAs. Our study also reveals that FPGAs from Xilinx exhibit different characteristics from the ones from Altera. That is, the prefix adder, which is optimized for speed in ASIC design, shows the poor performance on Xilinx devices, whereas it provides a comparable speed to the IP core on Altera devices. It suggests that error-prone manual change of the original design can be avoided on Altera devices if area is permitted. Experiments with MIPS CPU confirm the arguments.

  • PDF

Evaluation of Fatigue Life and Structural Analysis for Dish-Type and Spoke-Type Automobile Wheels (승용차용 디쉬 타입과 스포크 타입 휠에 대한 구조 해석과 피로 수명 예측)

  • Kang, Sung-Soo;Lee, Jong-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1315-1321
    • /
    • 2011
  • Prior to the experimental and production stages of goods, the strengths should be evaluated in the design stage. The introduction of commercial codes at the design stage gives benefits such as cost and time economies in the production and strength evaluation. In this study, structural analysis and fatigue analysis are carried out using ANSYS modeling of the 3D geometry of the wheel. In a comparison of dish-type and spoke-type wheels, it is shown that the deformation and maximum equivalent stress for the dish-type wheels are lower than those for spoke-type wheels. Nevertheless, spoke-type wheels are often used because they are light and have exhibit excellent cooling performance. Furthermore, according to the results of life analysis, aluminum wheels show improved resistance to fatigue compared to steel wheels.

Prediction on load carrying capacities of multi-storey door-type modular steel scaffolds

  • Yu, W.K.;Chung, K.F.
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.471-487
    • /
    • 2004
  • Modular steel scaffolds are commonly used as supporting scaffolds in building construction, and traditionally, the load carrying capacities of these scaffolds are obtained from limited full-scale tests with little rational design. Structural failure of these scaffolds occurs from time to time due to inadequate design, poor installation and over-loads on sites. In general, multi-storey modular steel scaffolds are very slender structures which exhibit significant non-linear behaviour. Hence, secondary moments due to both $P-{\delta}$ and $P-{\Delta}$ effects should be properly accounted for in the non-linear analyses. Moreover, while the structural behaviour of these scaffolds is known to be very sensitive to the types and the magnitudes of restraints provided from attached members and supports, yet it is always difficult to quantify these restraints in either test or practical conditions. The problem is further complicated due to the presence of initial geometrical imperfections in the scaffolds, including both member out-of-straightness and storey out-of-plumbness, and hence, initial geometrical imperfections should be carefully incorporated. This paper presents an extensive numerical study on three different approaches in analyzing and designing multi-storey modular steel scaffolds, namely, a) Eigenmode Imperfection Approach, b) Notional Load Approach, and c) Critical Load Approach. It should be noted that the three approaches adopt different ways to allow for the non-linear behaviour of the scaffolds in the presence of initial geometrical imperfections. Moreover, their suitability and accuracy in predicting the structural behaviour of modular steel scaffolds are discussed and compared thoroughly. The study aims to develop a simplified and yet reliable design approach for safe prediction on the load carrying capacities of multi-storey modular steel scaffolds, so that engineers can ensure safe and effective use of these scaffolds in building construction.

Design of Interleaved Thinned Planar Arrays Using Cyclic Difference Set (Cyclic Difference Set을 이용한 Interleaved Thinned 평면 배열 설계)

  • Kwon, Gina;Hwang, Keum Cheol;Park, Joon-Young;Kim, Seon-Joo;Kim, Dong-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1351-1358
    • /
    • 2012
  • In this paper, an analytical technique is proposed for the design of interleaved thinned planar array with well-behaved and predictable sidelobes. The interleaved arrays are composed of thinned planar subarrays based on cyclic difference sets(DSs). Becauce sidelobes of thinned planar subarrays based on DS are predictable by DS parameters, the subarrays exhibit very similar sidelobe levels by utilizing DS and complementary DS with similar autocorrelations each other. The combinatorial method also allows the design of interleaved placements with simultaneously optimum peak sidelobe levels(PSLs) of subarrays using cyclic shift-a property of DSs. The optimized PSLs of the interleaved array are -12.47 dB and -10.34 dB.

Performance Improvement Using Real-Time Detection of Time-Variant Load Impedance of the Receiver in Wireless Power Transfer System (시간에 따라 변하는 수신단 부하 임피던스의 실시간 검출을 통한 무선 전력 전송시스템의 성능 개선)

  • Jang, Hyeong-Seok;Tae, Hyun-Sung;Kim, Kwang-Seok;Yeo, Tae-Dong;Oh, Kyoung-Sub;Yu, Jong-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.679-689
    • /
    • 2014
  • In this paper, an analysis of the effect of time-variant reflected impedance and its detection method on wireless power transfer(WPT) systems are presented. The reflected resistance at WPT systems is very important parameter as it indicates how well matched antenna is and will exhibit high efficiency. Proposed detection method is based on transmitter current variation analysis with respect to frequency sweep. Using the proposed design method, a wireless power transfer system operating at the frequency of 125 kHz, is design and detect reflected impedance variation. The proposed design method provides good agreements between measured and simulated results. Therefore, The proposed detecting method provides a nonintrusive method to detect harmful object in WPT system.