• 제목/요약/키워드: Exciter system

검색결과 127건 처리시간 0.033초

구조물-가진기 상호작용에 의한 공진주파수 변동에 대한 해석 (Analysis on the Measured Natural Frequencies Due to the Structure-Exciter Interaction)

  • 한상보
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2108-2117
    • /
    • 1996
  • The purpose of this paper is to investigate the influence of the exciter attached for the measurement of natural frequencies when extracting the frequency response functions of the test structure in experimental modal analysis. The procedure is first to model the attached exciter as an additional degree of freedom system and next to verify the suggested model by experimentally extracting the natural frequencies of the test structure with various values of exciter mass, stinger stiffness and attachment position of the exciter on the test structure. It is concluded that as additional degree of freedom system which includes the natural frequency of the exciter itself and axial stiffness of stinger should be considered to quantatively define the coupling effects of structure-exciter interaction on the measured natural frequencies. It is not the mass of the exciter itself but the coupling effect of the additional degree of freedom mass-spring system consisting of exciter body and armature coil that characterizes the natural frequency deviation. Therefore, when the natural frequency of this additional mass-spring system is outside of the test frequency range, the coupling effect of structure-exciter interaction can be minimized.

스트레인 게이지 변위 추정기를 사용한 유동공진 가진기 개발 (The Development of Vibration Exciter Using Strain Displacement Estimator for Flow Resonance)

  • 최재혁;남윤수
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.125-132
    • /
    • 2001
  • Heat dissipation technology using flow resonant phenomenon is a kind of new concept in heat transfer area. A vibration exciter is needed to generate air turbulence which has the natural shedding frequency of heat system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator. An analytical dynamic model for this mechanical vibration exciter is presented and its' validity is verified by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, the vibration exciter using strain displacement estimator is developed. And in the experiment, the feedback control is used. During the experimental verification phase, it turns out the high modal resonant characteristics of vibrating plate are the major barrier against obtaining a high bandwidth vibration exciter.

  • PDF

유동공진을 위한 가진기 설계 및 평가 (Design and Evaluation of a Vibration Exciter for the Flow Resonance)

  • 남윤수;최재혁
    • 한국정밀공학회지
    • /
    • 제18권6호
    • /
    • pp.141-147
    • /
    • 2001
  • A heat dissipation technology using flow resonant phenomenon is a kind of new concept in heat transfer area. A vibration exciter is needed to generate an air turbulence which has the natural shedding frequency of a heat system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator. An analytical dynamic model for this mechanical vibration exciter is presented and its validity is verified by the comparison with experimental data. Values of some unko주 system parameters in the analytic model are estimated through the system identification approach. based on this mathematical model, a high bandwidth vibration exciter is designed using feedback control. During the experimental verification phased, it turns out the high frequency modal resonant characteristics of vibrating plate are the major barrier against obtaining a high bandwidth vibration exciter.

  • PDF

A Practical Exciter Model Reduction Approach For Power System Transient Stability Simulation

  • Kim, Soobae
    • 조명전기설비학회논문지
    • /
    • 제29권10호
    • /
    • pp.89-96
    • /
    • 2015
  • Explicit numerical integration methods for power system transient stability simulation require very small time steps to avoid numerical instability. The EXST1 exciter model is a primary source of fast dynamics in power system transients. In case of the EXST1, the required small integration time step for entire system simulation increases the computational demands in terms of running time and storage. This paper presents a practical exciter model reduction approach which allows the increase of the required step size and thus the method can decrease the computational demands. The fast dynamics in the original EXST1 are eliminated in the reduced exciter model. The use of a larger time step improves the computational efficiency. This paper describes the way to eliminate the fast dynamics from the original exciter model based on linear system theory. In order to validate the performance of the proposed method, case studies with the GSO-37 bus system are provided. Comparisons between the original and reduced models are made in simulation accuracy and critical clearing time.

Self-Starting Excitation System with Low-Power Permanent Magnet Generator

  • Cho, Chong Hyun;Lee, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2268-2275
    • /
    • 2018
  • This paper presents a high-efficiency low-power permanent magnet (PM) generator for the power supply of the generator exciter. In the conventional generator system, the power for the exciter is fed by the generator output power or an emergency battery for the starting. The proposed low-power PM generator can generate the proper power and voltage to excite the exciter field winding. According to the starting of the generator, the designed PM generator can supply the constant voltage to the Automatic Voltage Regulator (AVR), then it can be used to control of exciter field current for the generator. Because of the designed PM generator which is placed inside the conventional generator system, the emergency battery and Potential Transducer(PT) for AVR can be removed. Thus, the total efficiency can be improved. The proposed generator system is tested in the practical system. And the efficiency characteristic is analyzed.

유동공진을 위한 가진기 설계 (Vibration Exciter Design for Flow Resonance)

  • 남윤수;최재혁
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.125-130
    • /
    • 2000
  • Heat dissipation technology using flow resonant phenomenon is a kind of new concept in heat transfer area. A vibration exciter is needed to generate air turbulence which has the natural shedding frequency of heat system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator. An analytical dynamic model for this mechanical vibration exciter is presented and its validity is verified by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, a high bandwidth vibration phase, it turns out the high modal resonant characteristics of vibrating plate are the major barrier against obtaining a high bandwidth vibration exciter.

  • PDF

선박용 발전기 시스템의 강인 적응형 전압 제어 (Robust Adaptive Voltage Control of Electric Generators for Ships)

  • 조현철
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.326-331
    • /
    • 2016
  • This paper presents a novel robust adaptive AC8B exciter system against synchronous generators for ships. A PID (proportional integral derivative) control framework, which is a part of the AC8B exciter system, is simply composed of nominal and auxiliary control configurations. For selecting these proper parameter values, the former is conventionally chosen based on the experience and knowledge of experts, and the latter is optimally estimated via a neural networks optimization procedure. Additionally, we propose an online parameter learning-based auxiliary control to practically cope with deterioration of control performance owing to uncertainty in electric generator systems. Such a control mechanism ensures the robustness and adaptability of an AC8B exciter to enhance control performance in real-time implementation. We carried out simulation experiments to test the reliability of the proposed robust adaptive AC8B exciter system and prove its superiority through a comparative study in which a conventional PID control-based AC8B exciter system is similarly applied to our simulation experiments under the same simulation scenarios.

스트레인 게이지 변위추정 센서를 사용한 유동공진 가진기 설계 (Vibration Exciter Design for Flow Resonance with a Displacement Estimator Using Strain Gage)

  • 남윤수;최재혁;강병하
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1874-1881
    • /
    • 2002
  • Heat dissipation technology using the flow resonant phenomenon is a kind of a new concept in the heat transfer area. A vibration exciter is needed to enhance air flow mixing which has the natural shedding frequency of thermal system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator with a displacement estimator using strain gage. An analytical dynamic model for this mechanical vibration exciter is presented and its validity is checked by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, the vibration exciter using strain displacement estimator is developed. During the experimental verification phase, it turns out the high modal resonant characteristics of a vibrating plate are a major barrier against obtaining a high bandwidth vibration exciter.

승강압 쵸퍼를 이용한 새로운 발전기 여자 시스템 (A New Generator Static Excitation System Using Boost-Buck Chopper)

  • 류홍우;임익헌;설승기;박민호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.426-430
    • /
    • 1996
  • A new generator excitation system using a boost-buck chopper as a kind of static exciters is proposed to overcome the lack of field forcing capability of the bus fed exciter under the Input line fault condition. It increases or maintains the generator field current by boosting the field voltage in the case of the input AC line voltage drop during and immediately after a fault. The validity of the proposed excitation system is verified with the computer simulation. The generator stability according to the each difference exciter is tested using a commercial software package-CYME. The simulation results of the stability analysis on the generator with the proposed exciter is better than that of the bus fed exciter. This boost-buck chopper exciter can be simply implemented and controlled by the modem power electronics technology.

  • PDF

사장교 케이블 동특성 평가를 위한 케이블 가진시스템 개발 (Development of Cable Exciting System for Evaluating Dynamic Characteristics of Stay Cables)

  • 김남식;정운;서주원;안상섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.424-429
    • /
    • 2003
  • As a critical member of cable-stayed bridges, stay cables play an important role of supporting the entire structure. Traffic, wind or rain-wind induced vibrations of stay cables would be a major cause of degrading both safety and serviceability of the bridge. One of the effective alternatives to solve this problem is to employ the cable dampers. In order to design the cable damper optimally. it is necessary to exactly estimate the dynamic characteristics of the existing cables. Therefore, in this study, a cable exciting system (exciter) controlled digitally was developed. And to evaluate the performance of the cable exciter developed, a solution of the differential equation of cable motion considering the exciter was derived. Using the cable exciter. sine sweeping and resonance tests on a cable model were carried out to obtain the dynamic characteristics effectively.

  • PDF