• Title/Summary/Keyword: Excited force

Search Result 255, Processing Time 0.023 seconds

Levitation and Thrust Forces Analysis of Hybrid-Excited Linear Synchronous Motor for Magnetically Levitated Vehicle

  • Cho, Han-Wook;Kim, Chang-Hyun;Han, Hyung-Suk;Lee, Jong-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.564-569
    • /
    • 2012
  • This paper proposes a hybrid-excited linear synchronous motor (LSM) that has potential applications in a magnetically levitated vehicle. The levitation and thrust force characteristics of the LSM are investigated by means of three-dimensional (3-D) numerical electromagnetic FEM calculations and experimental verification. Compared to a conventional LSM with electromagnets, a hybrid-excited LSM can improve levitation force/weight ratios, and reduce the power consumption of the vehicle. Because the two-dimensional (2-D) FE analysis model describes only the center section of the physical device, it cannot express the complex behavior of leakage flux, which this study is able to predicts along with levitation and thrust force characteristics by 3-D FEM calculations. A static force tester for a hybrid-excited LSM has been manufactured and tested in order to verify these predictions. The experimental results confirm the validity of the 3-D FEM calculation scheme for the description of a hybrid-excited LSM.

Modeling of self-excited forces during multimode flutter: an experimental study

  • Siedziako, Bartosz;iseth, Ole O
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.293-309
    • /
    • 2018
  • The prediction of multimode flutter relies, to a larger extent than bimodal flutter, on accurate modeling of the self-excited forces since it is challenging to perform experimental validation by using aeroelastic tests for a multimode case. This paper sheds some light on the accuracy of predicted self-excited forces by comparing numerical predictions of self-excited forces with measured forces from wind tunnel tests considering the flutter vibration mode. The critical velocity and the corresponding flutter vibration mode of the Hardanger Bridge are first determined using the classical multimode approach. Then, a section model of the bridge is forced to undergo a motion corresponding to the flutter vibration mode at selected points along the bridge, during which the forces that act upon it are measured. The measured self-excited forces are compared with numerical predictions to assess the uncertainty involved in the modeling. The self-excited lift and pitching moment are captured in an excellent manner by the aerodynamic derivatives. The self-excited drag force is, on the other hand, not well represented since second-order effects dominate. However, the self-excited drag force is very small for the cross-section considered, making its influence on the critical velocity marginal. The self-excited drag force can, however, be of higher importance for other cross-sections.

Friction Model to Realize Self-Excited Vibration of Multi-body Systems (다물체계의 자려진동 구현을 위한 마찰 모델링)

  • Roh, Hyun-Young;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.103-108
    • /
    • 2007
  • This paper presents a friction model to realize self-excited vibration of multi-body systems. The friction coefficient is modeled with a spline function in most commercial codes. Even if such a function resolves the problem of discontinuity in friction force, it cannot realize self-excited vibration phenomena. Furthermore, as the relative velocity approaches zero, the friction coefficient approaches zero with the conventional model. So, slip occurs when small force is applied to the system. To avoid these problems a new friction model is proposed in this study. With the new friction model, the self-excited vibration can be realized since the friction coefficient changes with the relative velocity. Furthermore, the slip phenomena could be reduced significantly with the proposed model.

  • PDF

Friction Model to Realize Self-excited Vibration of Multi-body Systems (다물체계의 자려진동 구현을 위한 마찰 모델링)

  • Roh, Hyun-Young;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.6 s.123
    • /
    • pp.524-530
    • /
    • 2007
  • This paper presents a friction model to realize self-excited vibration of multi-body systems. The friction coefficient is modeled with a spline function in most commercial codes. Even if such a function resolves the problem of discontinuity in friction force, it cannot realize self-excited vibration phenomena. Furthermore, as the relative velocity approaches zero, the friction coefficient approaches zero with the conventional model. So, slip occurs when small force is applied to the system. To avoid these problems a new friction model is proposed in this study. With the new friction model, the self-excited vibration can be realized since the friction coefficient changes with the relative velocity. Furthermore, the slip phenomena could be reduced significantly with the proposed model.

Analysis and Performance of the Self Excited Eddy Current Brake

  • Cho, Sooyoung;Jeong, Teachul;Bae, Jaenam;Yoo, Changhee;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.459-465
    • /
    • 2017
  • This paper describes a performance analysis of self-excited eddy current brake(SECB). Stator winding of SECB is connected by capacitor instead of voltage source, and SECB's braking force is generated by L-C resonance. SECB has wide range of driving and nonlinear inductance as well. Therefore, it is important to select capacitance based on the value of inductance. This paper discusses about the process of deciding capacitance and the change of resonance frequency based on the inductance change in each speed. Also the braking force was confirmed by the experimental model of SECB.

Comparative Study of the Preheating Methods to Extend the Life of the Fluorescent Lamp (형광등의 수명 연장을 위한 예열 방식의 비교 연구)

  • Han, Jae-Hyun;Jo, Gye-Huyn;Park, Chong-Yeun
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.29-33
    • /
    • 2003
  • This paper proposed methods of filament preheating to extend a fluorescent lamp life. The ballast for the fluorescent lamp can be classified into two main groups magnetics and electronics. The electronic ballast is lighter and smaller than the magnetic ballast and it can dim up and down. There are two ways to start the fluorescent lamp in the electronic ballast: rapid start and instant start. Also there are two methods of the driving inverter self excited oscillation and force excited oscillation. The rapid starting is different from the instant starting in that the rapid start is preheating the filament before the steady state. If there is a preheating process before the lamp ignition, the life of the fluorescent lamp can be increased. This paper presented the preheating methods for self excited oscillating system and force excited oscillating system.

  • PDF

A study on the Structural Stability about the Fan Blade by the Air Excited Forces. (공기 가진력에 의한 팬 블레이드 구조 안정성 평가에 관한 연구)

  • 정규강;김경희;조생현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.93-101
    • /
    • 2000
  • In a gas-turbine engine, fan blades in flow path are confronted with many kinds of loading. The study of the excited force by the wake of struts has proposed and the possibility of fatigue failure about rotating fan blades by the excited force at the steady state is evaluated. Equations of the excited force of wakes has been derived at the steady state and the maximum pressure distributions measured at the transient state are proposed. Dynamic characteristics and the fatigue strength of fan blades by experimental test were obtained. To evaluate HCF(High Cycle Fatigue) damage of fan blades, FEM analysis was performed with a steady state harmonic response, which was followed by high cycle fatigue damage factor from goodman diagram.

  • PDF

Semiactive Neuro-control for Seismically Excited Structure Considering Dynamics of MR Damper (지진하중을 받는 구조물의 MR 유체 감쇠기를 이용한 반능동 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.403-410
    • /
    • 2003
  • A new semiactive control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system adopts a clipped algorithm which induces the MR damper to generate approximately the desired force. The improved neuro - controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then by using the clipped algorithm the appropriate command voltage is selected in order to cause the MR damper to generate the desired control force. The simulation results show that the proposed semiactive neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

Input Power Estimation of Point Loaded Cylindrical Shell (원통형쉘 구조물의 점가진 입력파워 추정)

  • Lee, Kyoung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.250-257
    • /
    • 2011
  • The power input to an infinite cylindrical shell excited by a point force is investigated. The circumferential direction and axial direction of the cylindrical shell is assumed as a two-dimensional unbounded medium, and the point force is replaced as a periodic array of imaginary sources. The spatial Fourier transform is taken from the equation of motion of the cylindrical shell, which is derived from the static model of Donell-Mushtari-Vlasov. The inverse Fourier transform is taken to derive the vibration responses. Mobility from out-of-plane forces and in-plane forces are derived from the obtained vibration responses. The theory is applied to a cylindrical shell excited by a normal direction of point force.

  • PDF

Design of Linear Transverse Flux Machine for Stelzer Machine using Equivalent Magnet Circuit and FEM

  • Jeong, Sung-In
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1596-1603
    • /
    • 2018
  • This paper presents the new design and validation process of the linear transverse flux machine of the stelzer machine for hybrid vehicle application. A linear transverse flux machine is a novel electric machine that has higher force density and power than conventional electric machine. The process concentrates on 2-dimensional and 3-dimensional analysis using equivalent magnetic circuit method considering leakage elements and it is verified by finite element analysis. Besides the force characteristics of all axis of each direction are analyzed. The study is considered by dividing the transverse flux electric excited type and the transverse flux permanent magnet excited type. Additionally three-dimensional analysis in this machine is accomplished due to asymmetric structure with another three axes. Finally, it suggests the new design and validation process of linear transverse flux machine for stelzer machine.