• Title/Summary/Keyword: Excitation force

Search Result 581, Processing Time 0.03 seconds

Development of evaluation program for vibration characteristics of onboard machinery with resilient mountings (선내 탑재 장비용 마운팅 시스템의 진동특성 평가 프로그램 개발)

  • Kim, Kuk-Su;Choi, Su-Hyun;Baek, Il-Cuk;Cho, Yeon;Kim, Byoung-Gon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.155-160
    • /
    • 2001
  • This study is performed to evaluate and design the vibration characteristics of the onboard machinery with resilient mountings. To reduce the vibration level of onboard machinery with resilient mountings, it is important to evaluate and, if necessary, modify the vibration characteristics of the resilient mountings. In this study, we have developed a program to calculate natural frequencies of the machinery with resilient mountings, forced vibration levels due to internal excitation force of the machinery itself and external excitation forces. of the main engine and the propeller. and the force and motion transmissibility of the resilient mountings. The developed program is also able to be applied to optimal design of the resilient mountings for obtaining a target natural frequency and for achieving a minimum forced vibration level at the center of gravity of the machinery.

  • PDF

Some aspects of the dynamic cross-wind response of tall industrial chimney

  • Gorski, Piotr
    • Wind and Structures
    • /
    • v.12 no.3
    • /
    • pp.259-279
    • /
    • 2009
  • The paper is concerned with the numerical study of the cross-wind response of the 295 m-tall six-flue industrial chimney, located in the power station of Belchatow, Poland. The response of the chimney due to turbulent wind flow is caused by the lateral turbulence component and vortex excitation with taking into account motion-induced wind forces. The cross-wind response has been estimated by means of the random vibration approach. Three power spectral density functions suggested by Kaimal, Tieleman and Solari for the evaluation of the lateral turbulence component response are taken into account. The vortex excitation response has been calculated by means of the Vickery and Basu's model including some complements. Motion-induced wind forces acting on a vibrating chimney have been modeled as a nonlinear aerodynamic damping force. The influence of three components mentioned above on the total cross-wind response of the chimney has been investigated. Moreover, the influence of damping ratios, evaluated by Multi-mode Random Decrement Technique, and number of mode shapes of the chimney have been examined. Computer programmes have been developed to obtain responses of the chimney. The numerical results and their comparison are presented.

Vibration Characteristics and Countermeasures of a Transaxle Type Forklift Truck (일체형 동력전달계를 가진 지게차의 진동 특성 규명 및 저감)

  • 김원현;주원호;김승규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.912-918
    • /
    • 2004
  • Main vibration problems of a transaxle type forklift truck are caused by the resonance of engine excitation force and natural mode shade of major components such as engine-mount system, mast, and main frame. But, it is well known that the reduction of vibration is very difficult because of the limitation of structural modifications. In this paper, the vibration characteristics of engine-mast system including engine mount were firstly identified by the experimental and simplified numerical methods. And also, the free and forced vibration characteristics of a whole forklift truck were surveyed with modal test and ODS(operation deflection shape) measurement. Based on these results, the reliable finite element model was developed. Finally, various countermeasures were considered and applied to a real forklift truck and then its effects were confirmed.

  • PDF

Vibration Control of an Engine Mount Featuring MR Fluid (MR 유체를 이용한 엔진마운트의 진동제어)

  • 이현희;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.213-218
    • /
    • 2001
  • A magnetorheological(MR) engine mount for a passenger vehicle and its vibration control performance is experimentally evaluated. A mixed-mode model for the MR engine is derived by incorporating Herschel-Bulkely model of the MR fluid. After analyzing the field-dependent damping force, a appropriate size of the MR engine mount is manufactured. The field-dependent is displacement transmissibility of the engine mount is evaluated in the frequency domain at various excitation levels. In addition, time-dependant damping force is experimentally investigated by changing the excitation amplitude.

  • PDF

Topology Optimization of a Structure under Harmonic Excitation caused by Magnetic Fields (자기장에 의한 조화가진을 받는 구조물의 위상 최적화)

  • Yu, Jeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1613-1620
    • /
    • 2001
  • This study is focused on the application of the homogenization design method (HDM) to reduce the vibration level of a structure excited by magnetic harmonic farces. This is accomplished by obtaining the optimal material distribution in a design domain to minimize the frequency response caused by the magnetic harmonic excitation. The Maxwell stress method is used to compute the magnetic force and the HDM is applied leer the optimization. The developed method is applied to a simple pole model that is excited by the harmonic bending farce caused by the current around an adjacent stator. Results shows that the HDM is valid to minimize the frequency response.

EXPERIMENTAL IDENTIFICATION ON A GEAR WHINE NOISE IN THE AXLE SYSTEM OF A PASSENGER VAN

  • Kim, S.J.;Lee, S.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • This paper presents practical work on the reduction of gear whine noise. In order to identify the source of the gear whine noise, transfer paths are searched and analyzed by operational deflection shape analysis and experimental modal analysis. It was found that gear whine noise has an air-borne noise path instead of structure-borne noise path. The main sources of air-borne noise were the two global modes caused by the resonance of an axle system. These modes created a vibro-acoustic noise problem. Vibro-acoustic noise can be reduced by controlling the vibration of the noise source. The vibration of noise source is controlled by the modification of structure to avoid the resonance or to reduce the excitation force. In the study, the excitation force of the axle system is attenuated by changing the tooth profile of the hypoid gear. The modification of the tooth profile yields a reduction of transmission error, which is correlated to the gear whine noise. Finally, whine noise is reduced by 10 dBA.

Pre-processor programing for the vibrational characteristic of generator's stator (발전기 고정자의 진동특성을 위한 전처리기 프로그래밍)

  • Ahn, Chang-Gi;Bae, Yong-Chae;Ham, ji-woong;Lee, Dong-Woen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.476-481
    • /
    • 2012
  • A plant's generator system under operating condition has been suffered the vibration from the excitation force with 120Hz. The vibration is generated in the stator end windings. For analyze dynamic characteristics of the generator's stator, its finite element model were obtained using ANSYS software package for modal and harmonic analysis. we compare the analysis result with experimental data. The results show that the resonance frequency, which is related with second ecliptical mode on the stator end windings 129Hz. The experimental results are good agreement with the FEA model.

  • PDF

A Study on Coupled Vibrations of Diesel Engine Propulsion Shafting (3rd Report : Vibration by Propeller Exciting and its Countermeasure) (디젤기관 추진 축계의 연성진동에 관한 연구 (제3보 : 프로펠러 기진에 의한 진동과 그 대책))

  • 전효중;이돈출;김의간;김정렬
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.173-179
    • /
    • 2001
  • The torsional or axial critical vibration of the order coinciding with the number of propeller blades is simultaneously excited by the harmonic tangential or radial forces acting on the crank shaft and by the harmonic of the same order from the propeller. The exciting torque of propeller is relatively small comparing with that of crank side, but the exciting force of propeller rather larger than that of crank shaft. With this situation, the exciting force of propeller cannot neglect if the axial vibration of propulsion shafting is calculated. With the propeller in its optimal angular position, i.e. its excitation effect opposed to that of the engine, the stresses at the critical revolution will largely cancel themselves out. In this paper, a method of optimizing the angular propeller position with regard to torsional and axial vibration is studied. The optimal relative angle is determined theoretically by calculation results of coupled torsional-axial vibration.

  • PDF

Fluid-conveying piezoelectric nanosensor: Nonclassical effects on vibration-stability analysis

  • Kachapi, Sayyid H. Hashemi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.619-629
    • /
    • 2020
  • In current study, surface/interface effects for pull-in voltage and viscous fluid velocity effects on dimensionless natural frequency (DNF) of fluid-conveying piezoelectric nanosensor (FCPENS) subjected to direct electrostatic voltage DC with nonlinear excitation, harmonic force and also viscoelastic foundation (visco-pasternak medium and structural damping) are investigated using Gurtin-Murdoch surface/interface (GMSIT) theory. For this analysis, Hamilton's principles, the assumed mode method combined with Lagrange-Euler's are used for the governing equations and boundary conditions. The effects of surface/interface parameters of FCPENS such as Lame's constants (λI,S, μI,S), residual stress (τ0I,S), piezoelectric constants (e31psk,e32psk) and mass density (ρI,S) are considered for analysis of dimensionless natural frequency respect to viscous fluid velocity u̅f and pull-in voltage V̅DC.

Detailed Finite Element Analysis of Full-scale Four-story Steel Frame Structure subjected to Consecutive Ground Motions

  • Tagawa, Hiroyuki;Miyamura, Tomoshi;Yamashita, Takuzo;Kohiyama, Masayuki;Ohsaki, Makoto
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.65-73
    • /
    • 2015
  • Detailed finite element (FE) analyses of a full-scale four-story steel frame structure, subjected to consecutive 60% and 100% excitations from the JR Takatori records during the 1995 Hyogoken-Nanbu earthquake, are conducted using E-Simulator. The four-story frame was tested at the largest shake-table facility in the world, E-Defense, in 2007. E-Simulator is a parallel FE analysis software package developed to accurately simulate structural behavior up to collapse by using a fine mesh of solid elements. To reduce computational time in consecutive dynamic time history analyses, static analysis with gravity force is introduced to terminate the vibration of the structure during the analysis of 60% excitation. An overall sway mechanism when subjected to 60% excitation and a story mechanism resulting from local buckling of the first-story columns when subjected to 100% excitation are simulated by using E-Simulator. The story drift response to the consecutive 60% and 100% excitations is slightly smaller than that for the single 100% excitation.