• Title/Summary/Keyword: Excitation energies

Search Result 54, Processing Time 0.021 seconds

The Influence of Collision Energy on the Reaction H+HS→H2+S

  • Liu, Yanlei;Zhai, Hongsheng;Zhu, Zunlue;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3350-3356
    • /
    • 2013
  • Quasi-classical trajectory calculations have been carried out for the reaction H+HS by using the newest triplet 3A" potential energy surface (PES). The effects of the collision energy and reagent initial rotational excitation are studied. The cross sections and thermal rate constants for the title reaction are calculated. The results indicate that the integral cross sections (ICSs) are sensitive to the collision energy and almost independent to the initial rotational states. The ro-vibrational distributions for the product $H_2$ at different collision energies are presented. The investigations on the vector correlations are also performed. It is found that the collision energies play a postive role on the forward scatter of the product molecules. There is a negative influence on both the alignment and orientation of the product angular momentum for low collision energy at low energy region. Whereas the influence of collision energy is not obvious at high energy region.

Interaction of Gas-phase Atomic Hydrogen with Chemisorbed Oxygen Atoms on a Silicon Surface

  • Lee, Sang-Kwon;Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1527-1533
    • /
    • 2011
  • The reaction of gas-phase atomic hydrogen with oxygen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. We have calculated the probability of the OH formation and energy deposit of the reaction exothermicity in the newly formed OH in the gas-surface reaction H(g) + O(ad)/Si${\rightarrow}$ OH(g) + Si. All reactive events occur in a single impact collision on a subpicosecond scale, following the Eley-Rideal mechanism. These events occur in a localized region around the adatom site on the surface. The reaction probability is dependent upon the gas temperature and shows the maximum near 1000 K, but it is essentially independent of the surface temperature. The reaction probability is also independent upon the initial excitation of the O-Si vibration. The reaction energy available for the product state is carried away by the desorbing OH in its translational and vibrational motions. When the initial excitation of the O-Si vibration increases, translational and vibrational energies of OH rise accordingly, while the energy shared by rotational motion varies only slightly. Flow of energy between the reaction zone and the solid has been incorporated in trajectory calculations, but the amount of energy propagated into the solid is only a few percent of the available energy released in the OH formation.

Stochastic optimal control of coupled structures

  • Ying, Z.G.;Ni, Y.Q.;Ko, J.M.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.669-683
    • /
    • 2003
  • The stochastic optimal nonlinear control of coupled adjacent building structures is studied based on the stochastic dynamical programming principle and the stochastic averaging method. The coupled structures with control devices under random seismic excitation are first condensed to form a reduced-order structural model for the control analysis. The stochastic averaging method is applied to the reduced model to yield stochastic differential equations for structural modal energies as controlled diffusion processes. Then a dynamical programming equation for the energy processes is established based on the stochastic dynamical programming principle, and solved to determine the optimal nonlinear control law. The seismic response mitigation of the coupled structures is achieved through the structural energy control and the dimension of the optimal control problem is reduced. The seismic excitation spectrum is taken into account according to the stochastic dynamical programming principle. Finally, the nonlinear controlled structural response is predicted by using the stochastic averaging method and compared with the uncontrolled structural response to evaluate the control efficacy. Numerical results are given to demonstrate the response mitigation capabilities of the proposed stochastic optimal control method for coupled adjacent building structures.

Picosecond Dynamics of CN--Ligated Ferric Cytochrome c after Photoexcitation Using Time-resolved Vibrational Spectroscopy

  • Kim, Joo-Young;Park, Jae-Heung;Chowdhury, Salina A.;Lim, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3771-3776
    • /
    • 2010
  • The dynamics of the $CN^-$-ligated ferric cytochrome c (CytcCN) in $D_2O$ at 283 K following Q-band photoexcitation at 575 nm was observed using femtosecond time-resolved vibrational spectroscopy. The equilibrium vibrational spectrum of the CN stretching mode of CytcCN shows two overlapping bands: one main band (82%) at $2122\;cm^{-1}$ with $23\;cm^{-1}$ full width at half maximum (fwhm) and the other band (18%) at $2116\;cm^{-1}$ with $7\;cm^{-1}$ fwhm. The time-resolved spectra show bleaching of the CN fundamental mode of CytcCN and two absorption features at lower energies. The bleach signal and both absorption features are all formed within the time resolution of the experiment (< 200 fs) and decay with a life time of 1.9 ps. One transient absorption feature, appearing immediately red to the bleach signal, results from the thermal excitation of low-frequency modes of the heme that anharmonically couple to the CN fundamental mode, thereby shifting the CN mode to lower energies. The shift of the CN mode decays with a lifetime of 2 ps, equivalent to the time scale for vibrational cooling of the low-frequency heme modes. The other transient absorption feature, which is 3.3 times weaker than the bleach signal and shifted $27\;cm^{-1}$ toward lower energies, is attributed to the CN mode in an electronically excited state where the CN bond is weakened with a lowered extinction coefficient. These observations suggest that photoexcited CytcCN mainly undergoes ultrafast radiationless relaxation, causing photo-deligation of $CN^-$ from CytcCN highly inefficient. As also observed in $CN^-$-ligated myoglobin, inefficient ligand photodissociation might be a general property of $CN^-$-ligated ferric hemes.

Electronic Spectroscopy and Ligand Field Analysis of $\Lambda$-fac-Tris(L-alaninato)chromium(III)

  • Choi, Jong-Ha
    • Journal of Photoscience
    • /
    • v.3 no.1
    • /
    • pp.43-47
    • /
    • 1996
  • The 77 K emission and excitation, and room-temperature UV-visible spectra of $\Lambda$-fac[Cr(L-ala)$_3$] (ala = alanine anion) have been measured. The ten electronic transitions due to spinallowed and spin-forbidden are assigned. With the observed electronic transition energies, ligand field optimizations have been performed to determine the bonding properties of L-alanine anion toward chromium(III). The angular overlap model (AOM) parameters obtained indicate that it is electron-donating ligand which has values of e$_{\sigma}O$, e$_{\pi}O$, and e$_{\sigma}N$ slightly lower than those of glycine anion (gly). It seem that the decrease of the ligand field properties is due to steric effect of extra methyl group and inductive effect of adjacent carbonyl group.

  • PDF

Photoluminescence Up-conversion in GaAs/AlGaAs Heterostructures

  • Cheong, Hyeonsik M.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.58-61
    • /
    • 2002
  • Photoluminescence up-conversion in semiconductor heterostructures is a phenomenon in which luminescence occurs at energies higher than that of the excitation photons. It has been observed in many semiconductor heterostructure systems, including InP/AnALAs, CdTe/CdMgTe, GaAs/ordered-(Al)GalnP, GaAs/AIGaAs, and InAs/GaAs. In this wort, GaAs/AIGaAs heterostructures are used as a model system to study the mechanism of the up-conversion process. This system is ideal for testing different models because the band offsets are quite well documented. Different heterostructures are designed to study the effect of disorder on the up-converted luminescence efficiency. In order to study the roles of different types of carriers, the effect of doping was investigated. It was found that the up-converted luminescence is significantly enhanced by p-type doping of the higher-band-gap material.

  • PDF

Effect of Open Channels on the Isolation of Overlapping Resonances in the Uniformly Perturbed Rydberg Systems Studied by Multichannel Quantum Defect Theory

  • Lee, Chun-Woo;Kim, Jeong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1519-1526
    • /
    • 2011
  • A previous study (Lee, C. W. J. Phys. B 2010, 43, 175002) that isolated the overlapping resonances in the photoionization spectra using multichannel quantum defect theory (MQDT) in systems involving a single open channel was extended to manage many open channels when the closed channels are degenerate. The theory was applied to the dipole allowed J = 1$^{\circ}$ spectra from the ground state with excitation energies lying between the lowest ionization thresholds for rare gas atoms, Ar, Kr, and Xe, and also for group IV elements, Ge, Sn and Pb.

CASPT2 Study on the Low-lying Electronic States of 1,3,5-C6H3Cl3+ Ion

  • Yu, Shu-Yuan;Zhang, Cheng-Gen;Wang, Shu-Jun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1511-1515
    • /
    • 2014
  • The multiconfiguration second-order perturbation theory (CASPT2) and complete active space self-consistent field (CASSCF) methods were employed to calculate the geometries and energy levels for the low-lying electronic states of 1,3,5-$C_6H_3Cl{_3}^+$ ion. The CASPT2 values for the 1,3,5-$C_6H_3Cl{_3}^+$ ion were in reasonable agreement with the available experimental values. The current calculations augmented previous theoretical investigations on the ground state and assigned the low-lying excited electronic states of the 1,3,5-$C_6H_3Cl{_3}^+$ ion. The Jahn-Teller distortion in the excited electronic state for the 1,3,5-$C_6H_3Cl{_3}^+$ ion were reported for the first time.

PbS Quantum-dots in Glasses

  • Liu, Chao;Heo, Jong
    • Ceramist
    • /
    • v.10 no.3
    • /
    • pp.7-14
    • /
    • 2007
  • PbS QDs in glasses have attracted much attention due to the potentials for near-infrared applications. Growth of PbS QDs in the glass is discussed and size of PbS QDs formed in the glass can be tuned by varying the thermal treatment conditions. Hyperbolic-band approximation and four-band envelope function provide good simulation of the exciton energies of PbS QDs. Absorption and photoluminescence of PbS QDs was tuned into $1{\sim}2{\mu}m$ wave-length regime with large full width at half maximum photoluminescence intensity (>160 nm). Photoluminescence intensity of PbS QDs in the glasses was closely related to size of quantum dots, temperature, excitation and defects. Decrease in temperature shifted the photoluminescence bands to shorter wavelength and switched the photoluminescence from darkened state and brightened state.

  • PDF

Electron Transport Properties in Xenon Gas Detectors

  • Date, H.;Ishimaru, Y.;Shimozuma, M.
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.285-288
    • /
    • 2002
  • In this study, we investigate electron transport properties in xenon gas by using a Monte Carlo technique for electrons with energies below 10 keV. First of all, we determine a set of electron collision cross sections with xenon by scrutinizing the cross section data taken from many publications. Then, the W value and the Fano factor for electrons in gaseous xenon are computed by the Monte Carlo simulation on the assumption that electrons undergo single collision events including elastic, excitation and ionization processes. We also evaluate the production number of excited atoms.

  • PDF