DOI QR코드

DOI QR Code

Picosecond Dynamics of CN--Ligated Ferric Cytochrome c after Photoexcitation Using Time-resolved Vibrational Spectroscopy

  • Kim, Joo-Young (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Park, Jae-Heung (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Chowdhury, Salina A. (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Lim, Man-Ho (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
  • Received : 2010.10.29
  • Accepted : 2010.11.11
  • Published : 2010.12.20

Abstract

The dynamics of the $CN^-$-ligated ferric cytochrome c (CytcCN) in $D_2O$ at 283 K following Q-band photoexcitation at 575 nm was observed using femtosecond time-resolved vibrational spectroscopy. The equilibrium vibrational spectrum of the CN stretching mode of CytcCN shows two overlapping bands: one main band (82%) at $2122\;cm^{-1}$ with $23\;cm^{-1}$ full width at half maximum (fwhm) and the other band (18%) at $2116\;cm^{-1}$ with $7\;cm^{-1}$ fwhm. The time-resolved spectra show bleaching of the CN fundamental mode of CytcCN and two absorption features at lower energies. The bleach signal and both absorption features are all formed within the time resolution of the experiment (< 200 fs) and decay with a life time of 1.9 ps. One transient absorption feature, appearing immediately red to the bleach signal, results from the thermal excitation of low-frequency modes of the heme that anharmonically couple to the CN fundamental mode, thereby shifting the CN mode to lower energies. The shift of the CN mode decays with a lifetime of 2 ps, equivalent to the time scale for vibrational cooling of the low-frequency heme modes. The other transient absorption feature, which is 3.3 times weaker than the bleach signal and shifted $27\;cm^{-1}$ toward lower energies, is attributed to the CN mode in an electronically excited state where the CN bond is weakened with a lowered extinction coefficient. These observations suggest that photoexcited CytcCN mainly undergoes ultrafast radiationless relaxation, causing photo-deligation of $CN^-$ from CytcCN highly inefficient. As also observed in $CN^-$-ligated myoglobin, inefficient ligand photodissociation might be a general property of $CN^-$-ligated ferric hemes.

Keywords

References

  1. Antonini, E.; Brunori, M. Hemoglobin and Myoglobin in Their Reactions With Ligands; North-Holland Publishing Company: London, UK, 1971.
  2. Austin, R. H.; Beeson, K. W.; Eisenstein, L.; Frauenfelder, H.; Gunsalus, I. C. Biochemistry 1975, 14, 5355. https://doi.org/10.1021/bi00695a021
  3. Kim, J.; Park, J.; Lee, T.; Lim, M. J. Phys. Chem. B 2009, 113, 260. https://doi.org/10.1021/jp804656t
  4. Springer, B. A.; Sligar, S. G.; Olson, J. S.; Phillips, G. N., Jr. Chem.Rev. 1994, 94, 699. https://doi.org/10.1021/cr00027a007
  5. Ansari, A.; Berendzen, J.; Braunstein, D. K.; Cowen, B. R.; Frauenfelder, H.; Hong, M. K.; Iben, I. E. T.; Johnson, J. B.; Ormos, P.; Sauke, T. B.; Scholl, R.; Schulte, A.; Steinbach, P. J.; Vittitow, J.; Young, R. D. Biophys. Chem. 1987, 26, 337. https://doi.org/10.1016/0301-4622(87)80034-0
  6. Balasubramanian, S.; Lambright, D. G.; Marden, M. C.; Boxer, S.G. Biochemistry 1993, 32, 2202. https://doi.org/10.1021/bi00060a011
  7. Cornelius, P. A.; Steele, A. W.; Chernoff, D. A.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. USA 1981, 78, 7526. https://doi.org/10.1073/pnas.78.12.7526
  8. Henry, E. R.; Sommer, J. H.; Hofrichter, J.; Eaton, W. A. J. Mol.Biol. 1983, 166, 443. https://doi.org/10.1016/S0022-2836(83)80094-1
  9. Kim, S.; Jin, G.; Lim, M. J. Phys. Chem. B 2004, 108, 20366. https://doi.org/10.1021/jp0489020
  10. Martin, J. L.; Migus, A.; Poyart, C.; Lecarpentier, Y.; Astier, R.; Antonetti, A. Proc. Natl. Acad. Sci. USA 1983, 80, 173. https://doi.org/10.1073/pnas.80.1.173
  11. Petrich, J. W.; Lambry, J. C.; Kuczera, K.; Karplus, M.; Poyart, C.; Martin, J. L. Biochemistry 1991, 30, 3975. https://doi.org/10.1021/bi00230a025
  12. Walda, K. N.; Liu, X. Y.; Sharma, V. S.; Magde, D. Biochemistry 1994, 33, 2198. https://doi.org/10.1021/bi00174a029
  13. Ye, X.; Yu, A.; Champion, P. M. J. Am. Chem. Soc. 2006, 128, 1444. https://doi.org/10.1021/ja057172m
  14. Ye, X.; Yu, A.; Georgiev, G. Y.; Gruia, F.; Ionascu, D.; Cao, W.; Sage, J. T.; Champion, P. M. J. Am. Chem. Soc. 2005, 127, 5854. https://doi.org/10.1021/ja042365f
  15. Helbing, J.; Bonacina, L.; Pietri, R.; Bredenbeck, J.; Hamm, P.; van Mourik, F.; Chaussard, F. i.; Gonzalez-Gonzalez, A.; Chergui, M.; Ramos-Alvarez, C.; Ruiz, C.; Lopez-Garriga, J. Biophys. J. 2004, 87, 1881. https://doi.org/10.1529/biophysj.103.036236
  16. Horecker, B. L.; Kornberg, A. J. Biol. Chem. 1946, 165, 11.
  17. George, P.; Tsou, C. L. Biochem. J. 1952, 50, 440.
  18. Petrich, J. W.; Poyart, C.; Martin, J. L. Biochemistry 1988, 27, 4049. https://doi.org/10.1021/bi00411a022
  19. Reddy, K. S.; Yonetani, T.; Tsuneshige, A.; Chance, B.; Kushkuley, B.; Stavrov, S. S.; Vanderkooi, J. M. Biochemistry 1996, 35, 5562. https://doi.org/10.1021/bi952596m
  20. Boffi, A.; Chiancone, E.; Peterson, E. S.; Wang, J.; Rousseau, D.L.; Friedman, J. M. Biochemistry 1997, 36, 4510. https://doi.org/10.1021/bi961889s
  21. Negrerie, M.; Cianetti, S.; Vos Marten, H.; Martin, J.-L.; Kruglik Sergei, G. J. Phys. Chem. B 2006, 110, 12766. https://doi.org/10.1021/jp0559377
  22. Bolognesi, M.; Rosano, C.; Losso, R.; Borassi, A.; Rizzi, M.; Wittenberg, J. B.; Boffi, A.; Ascenzi, P. Biophys. J. 1999, 77, 1093. https://doi.org/10.1016/S0006-3495(99)76959-6
  23. Yao, Y.; Qian, C.; Ye, K.; Wang, J.; Bai, Z.; Tang, W. J. Biol.Inorg. Chem. 2002, 7, 539. https://doi.org/10.1007/s00775-001-0334-y
  24. Varhac, R.; Antalik, M. J. Biol. Inorg. Chem. 2008, 13, 713. https://doi.org/10.1007/s00775-008-0357-8
  25. Danielsson, J.; Meuwly, M. ChemPhysChem 2007, 8, 1077. https://doi.org/10.1002/cphc.200700042
  26. Danielsson, J.; Meuwly, M. J. Phys. Chem. B 2007, 111, 218. https://doi.org/10.1021/jp0662698
  27. Takano, T.; Kallai, O. B.; Swanson, R.; Dickerson, R. E. J. Biol.Chem. 1973, 248, 5234.
  28. Sutin, N.; Yandell, J. K. J. Biol. Chem. 1972, 247, 6932.
  29. Brautigan, D. L.; Feinberg, B. A.; Hoffman, B. M.; Margoliash, E.; Preisach, J.; Blumberg, W. E. J. Biol. Chem. 1977, 252, 574.
  30. Morishima, I.; Inubushi, T. FEBS Lett 1977, 81, 57. https://doi.org/10.1016/0014-5793(77)80927-7
  31. Lee, T.; Park, J.; Kim, J.; Joo, S.; Lim, M. Bull. Korean Chem.Soc. 2009, 30, 177. https://doi.org/10.5012/bkcs.2009.30.1.177
  32. Hamm, P.; Kaindl, R. A.; Stenger, J. Opt. Lett. 2000, 25, 1798. https://doi.org/10.1364/OL.25.001798
  33. Glasoe, P. K.; Long, F. A. J. Phys. Chem. 1960, 64, 188. https://doi.org/10.1021/j100830a521
  34. Yoshikawa, S.; O'Keeffe, D. H.; Caughey, W. S. J. Biol. Chem. 1985, 260, 3518.
  35. Lim, M.; Jackson, T. A.; Anfinrud, P. A. J. Phys. Chem. 1996, 100, 12043. https://doi.org/10.1021/jp9536458
  36. Hamm, P.; Ohline, S. M.; Zinth, W. J. Chem. Phys. 1997, 106,519. https://doi.org/10.1063/1.473392
  37. Mizutani, Y.; Kitagawa, T. Science 1997, 278, 443. https://doi.org/10.1126/science.278.5337.443
  38. Moore, J. N.; Hansen, P. A.; Hochstrasser, R. M. Proc. Natl. Acad.Sci. USA 1988, 85, 5062. https://doi.org/10.1073/pnas.85.14.5062
  39. Ansari, A.; Szabo, A. Biophys. J. 1993, 64, 838. https://doi.org/10.1016/S0006-3495(93)81445-0
  40. Lim, M.; Jackson, T. A.; Anfinrud, P. A. J. Am. Chem. Soc. 2004, 126, 7946. https://doi.org/10.1021/ja035475f
  41. Locke, B.; Lian, T.; Hochstrasser, R. M. Chem. Phys. 1991, 158, 409. https://doi.org/10.1016/0301-0104(91)87080-F
  42. Hamm, P.; Lim, M.; Hochstrasser, R. M. J. Chem. Phys. 1997, 107, 10523. https://doi.org/10.1063/1.474216

Cited by

  1. Photoexcitation Dynamics of NO-Bound Ferric Myoglobin Investigated by Femtosecond Vibrational Spectroscopy vol.117, pp.10, 2013, https://doi.org/10.1021/jp400055d
  2. Dynamics of Geminate Rebinding of CO to Cytochrome c in Guanidine HCl Probed by Femtosecond Vibrational Spectroscopy vol.117, pp.17, 2013, https://doi.org/10.1021/jp401481q
  3. Geminate rebinding dynamics of nitric oxide to ferric hemoglobin in D2O solution vol.12, pp.6, 2013, https://doi.org/10.1039/c3pp50014d
  4. Photoexcitation Dynamics of Thiocyanate-Bound Heme Proteins Using Femtosecond Infrared Spectroscopy pp.12295949, 2018, https://doi.org/10.1002/bkcs.11584
  5. Vibrational Relaxation of Cyanate or Thiocyanate Bound to Ferric Heme Proteins Studied by Femtosecond Infrared Spectroscopy vol.35, pp.3, 2010, https://doi.org/10.5012/bkcs.2014.35.3.758
  6. Identifying and Modulating Accidental Fermi Resonance: 2D IR and DFT Study of 4-Azido-L-phenylalanine vol.122, pp.34, 2010, https://doi.org/10.1021/acs.jpcb.8b03887
  7. Conformer-Specific Photodissociation Dynamics of CF2ICF2I in Solution Probed by Time-Resolved Infrared Spectroscopy vol.124, pp.39, 2020, https://doi.org/10.1021/acs.jpcb.0c06241