• 제목/요약/키워드: Excitation Optimization

검색결과 139건 처리시간 0.029초

Robust multi-objective optimization of STMD device to mitigate buildings vibrations

  • Pourzeynali, Saeid;Salimi, Shide;Yousefisefat, Meysam;Kalesar, Houshyar Eimani
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.347-369
    • /
    • 2016
  • The main objective of this paper is the robust multi-objective optimization design of semi-active tuned mass damper (STMD) system using genetic algorithms and fuzzy logic. For optimal design of this system, it is required that the uncertainties which may exist in the system be taken into account. This consideration is performed through the robust design optimization (RDO) procedure. To evaluate the optimal values of the design parameters, three non-commensurable objective functions namely: normalized values of the maximum displacement, velocity, and acceleration of each story level are considered to minimize simultaneously. For this purpose, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solutions. The torsional effects due to irregularities of the building and/or unsymmetrical placements of the dampers are taken into account through the 3-D modeling of the building. Finally, the comparison of the results shows that the probabilistic robust STMD system is capable of providing a reduction of about 52%, 42.5%, and 37.24% on the maximum displacement, velocity, and acceleration of the building top story, respectively.

Enhanced salp swarm algorithm based on opposition learning and merit function methods for optimum design of MTMD

  • Raeesi, Farzad;Shirgir, Sina;Azar, Bahman F.;Veladi, Hedayat;Ghaffarzadeh, Hosein
    • Earthquakes and Structures
    • /
    • 제18권6호
    • /
    • pp.719-730
    • /
    • 2020
  • Recently, population based optimization algorithms are developed to deal with a variety of optimization problems. In this paper, the salp swarm algorithm (SSA) is dramatically enhanced and a new algorithm is named Enhanced Salp Swarm Algorithm (ESSA) which is effectively utilized in optimization problems. To generate the ESSA, an opposition-based learning and merit function methods are added to standard SSA to enhance both exploration and exploitation abilities. To have a clear judgment about the performance of the ESSA, firstly, it is employed to solve some mathematical benchmark test functions. Next, it is exploited to deal with engineering problems such as optimally designing the benchmark buildings equipped with multiple tuned mass damper (MTMD) under earthquake excitation. By comparing the obtained results with those obtained from other algorithms, it can be concluded that the proposed new ESSA algorithm not only provides very competitive results, but also it can be successfully applied to the optimal design of the MTMD.

모노펄스 추적용 선형 배열 안테나 빔 패턴 및 여기 전류 가중치들의 최적 합성에 관한 연구 (A Study on the Optimum Synthesis of Beam Patterns and Excitation Current Weights for Monopulse Tracking Linear Array Antennas)

  • 박의준
    • 한국전자파학회논문지
    • /
    • 제19권5호
    • /
    • pp.533-540
    • /
    • 2008
  • 등간격 안테나 소자들로 구성된 모노펄스 추적용 선형 배열 안테나의 합 및 차 패턴 합성 문제에서 원하는 패턴을 만족시키도록 하는 개별 안테나 급전 여기 전류의 상대적인 가중치들을 도출하는 효율적인 수치적 방법을 제안한다. 이 방법은 패턴 배열 인자를 표현하는 Schelkunoff 다항식에 내재된 패턴 null 점들의 최적 섭동에 기본을 둔다. 따라서 여기 전류 가중치들을 직접 최적화하는 기존의 방식과는 달리, 이 방법은 null 점 제어에 의해 원하는 개별 sidelobe 레벨(SLL)들을 갖는 패턴과 해당 여기 전류 가중치들을 쉽게 합성할 수 있는 장점을 가진다. 또한, 최적화 과정에서 null 점 초기값에 따라 두 가지 형태의 차 패턴들을 합성할 수 있음을 보인다. 임의의 SLL들을 갖는 패턴들을 합성하고, 도출된 결과들을 배열 인자 식에 대입함으로써 제안한 방법의 타당성을 수치적으로 검증한다.

Particle Swarm Optimization을 이용한 비균일 급전, 비균등 간격의 선형 어레이 설계 (Design of a Randomly Excited and Randomly Spaced Linear Array Using the Particle Swarm Optimization)

  • 김철복;장재삼;이호상;김재훈;박승배;이문수
    • 대한전자공학회논문지TC
    • /
    • 제45권11호
    • /
    • pp.45-54
    • /
    • 2008
  • 본 논문에서는 particle swarm optimization (PSO)을 사용하여 가장 낮은 SLL같을 갖거나 가장 좁은 빔폭을 가지는 비균일 급전, 비균등 간격의 선형 어레이를 설계하였다. 어레이 소자의 급전 크기와 급전 소자간의 간격을 조절하기 위해 변수로 지정하였다. 두 가지 변수를 동시에 무작위로 조절하여 빔패턴을 최적화하였다. 빔패턴의 널 포인트를 기준으로 나누어 각각의 사이드로브에 가중치를 부여함으로써 적합도 함수의 성능을 향상시켰고, 이를 이용하여 최적의 빔패턴을 얻을 수 있었다. 이 때, 가중치 값과 빔패턴을 나누는 각은 여러 번의 시도를 통해 얻을 수 있었다. SLL 뿐만 아니라 빔폭까지 고려하기 위해 fitness function에 추가적인 항목 ${\beta}{\times}BW$을 첨가하였다. 이로써, 가장 낮은 SLL값을 갖거나 가장 좁은 빔폭을 갖는 빔패턴을 갖는 어레이를 설계하였다. 10개의 어레이 소자를 이용하여 최적화 하였을 때, 전자는 -43dB의 SLL값과 $32.2^{\circ}$의 빔폭을 가졌고, 후자는 -26dB의 SLL값과 $24.2^{\circ}$의 빔폭을 가졌다.

Optimization of LQR method for the active control of seismically excited structures

  • Moghaddasie, Behrang;Jalaeefar, Ali
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.243-261
    • /
    • 2019
  • This paper introduces an appropriate technique to estimate the weighting matrices used in the linear quadratic regulator (LQR) method for active structural control. For this purpose, a parameter is defined to regulate the relationship between the structural energy and control force. The optimum value of the regulating parameter, is determined for single degree of freedom (SDOF) systems under seismic excitations. In addition, the suggested technique is generalized for multiple degrees of freedom (MDOF) active control systems. Numerical examples demonstrate the robustness of the proposed method for controlled buildings under a wide range of seismic excitations.

Search for new phosphors for flat panel displays and lightings using combinatorial chemistry and computational optimization

  • Sohn, Kee-Sun;Jung, Yu-Sun;Cho, Sang-Ho;Kulshreshtha, Chandramouli
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.33-38
    • /
    • 2006
  • An evolutionary optimization process involving genetic algorithm and combinatorial chemistry was employed in an attempt to develop titanate-based red phosphors suitable for tri-color white light emitting diodes We screened a eight-cation oxide system including $(K,Li,Na)_x(Y,Gd,La,Eu)_yTi_zO_{\delta}$ in terms of luminescent efficiency. The combination of genetic algorithm and combinatorial chemistry was proven to enhance the searching efficiency when applied for phosphor screening. As a result, the composition was optimized to be $(Na_{0.92}Li_{0.08})(Y_{0.8}Gd_{0.2})TiO_4:Eu^{3+}$, The luminance of this phosphor was 110 % of that of well-known scheelite variant phosphor at an excitation of 400 nm.

  • PDF

Pattern Optimization of Intentional Blade Mistuning for the Reduction of the Forced Response Using Genetic Algorithm

  • Park, Byeong-Keun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권7호
    • /
    • pp.966-977
    • /
    • 2003
  • This paper investigates how intentional mistuning of bladed disks reduces their sensitivity to unintentional random mistuning. The class of intentionally mistuned disks considered here is limited, for cost reasons, to arrangements of two types of blades (A and B, say). A two-step procedure is then described to optimize the arrangement of these blades around the disk to reduce the effects of unintentional random mistuning. First, a pure optimization effort is undertaken to obtain the pattern (s) of the A and B blades that yields small/the smallest value of the largest amplitude of response to a given excitation in the absence of unintentional random mistuning using Genetic Algorithm. Then, in the second step, a qualitative/quantitative estimate of the sensitivity for the optimized intentionally mistuned bladed disks with respect to unintentional random mistuning is performed by analyzing their amplification factor, probability density function and passband/stopband structures. Examples of application with simple bladed disk models demonstrate the significant benefits of using this class of intentionally mistuned disks.

Stochastic optimum design of linear tuned mass dampers for seismic protection of high towers

  • Marano, Giuseppe Carlo;Greco, Rita;Palombella, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.603-622
    • /
    • 2008
  • This work deals with the design optimization of tuned mass damper (TMD) devices used for mitigating vibrations in high-rise towers subjected to seismic accelerations. A stochastic approach is developed and the excitation is represented by a stationary filtered stochastic process. The effectiveness of the vibration control strategy is evaluated by expressing the objective function as the reduction factor of the structural response in terms of displacement and absolute acceleration. The mechanical characteristics of the tuned mass damper represent the design variables. Analyses of sensitivities are carried out by varying the input and structural parameters in order to assess the efficiency of the TMD strategy. Variations between two different criteria are also evaluated.

네트워크 통신장비의 진동 해석 (Vibration Analysis of Network Communication Equipment)

  • 이재환;김진섭;김영중
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.467-472
    • /
    • 2006
  • The purpose of this paper is to check the structural safety of the network equipments by performing the static and dynamic finite element analysis. The stress and displacement of structures under static loading condition are evaluated to check whether satisfying the design requirement conditions. Since the computed natural frequencies are similar to the results of experiment. the model could be used for the response spectrum analysis where experimental acceleration value at each frequency are used as seismic input excitation. It is shown that the analysis results are a little bit larger than that of the experimental values. Also sensitivity analysis and optimization for the natural frequency are performed and it is found that the first natural frequency is very sensitive to the stiffness of the equipment.

  • PDF

서브스판 진동을 고려한 송전선로 검사로봇 프레임 구조 설계에 관한 연구 (A Study on Dynamic Stiffness of Inspection Robot Frame Considering Sub-span Oscillation)

  • 김문영;이준영;이택진;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.827-829
    • /
    • 2014
  • This paper presents a design methodology for improving dynamic stiffness of an inspection robot frame to prevent resonance. Finite element models of robot frame are developed for natural frequency analysis. Natural frequency analysis of robot frame is conducted to compare with sub-span oscillation which is excitation frequency. Reinforcement beams are applied to the sensitive parts of the robot frame to improve dynamic stiffness using case study. To reduce mass of the robot frame, thickness optimization of the robot frame is carried out by utilizing response surface method. The result of optimization show that dynamic stiffness of robot frame is increased. As a result, natural frequency of an optimal model is not included in range of frequencies of the sub-span oscillation.

  • PDF