DOI QR코드

DOI QR Code

Enhanced salp swarm algorithm based on opposition learning and merit function methods for optimum design of MTMD

  • Raeesi, Farzad (Faculty of Civil Engineering, University of Tabriz) ;
  • Shirgir, Sina (Faculty of Civil Engineering, University of Tabriz) ;
  • Azar, Bahman F. (Faculty of Civil Engineering, University of Tabriz) ;
  • Veladi, Hedayat (Faculty of Civil Engineering, University of Tabriz) ;
  • Ghaffarzadeh, Hosein (Faculty of Civil Engineering, University of Tabriz)
  • Received : 2020.03.25
  • Accepted : 2020.06.10
  • Published : 2020.06.25

Abstract

Recently, population based optimization algorithms are developed to deal with a variety of optimization problems. In this paper, the salp swarm algorithm (SSA) is dramatically enhanced and a new algorithm is named Enhanced Salp Swarm Algorithm (ESSA) which is effectively utilized in optimization problems. To generate the ESSA, an opposition-based learning and merit function methods are added to standard SSA to enhance both exploration and exploitation abilities. To have a clear judgment about the performance of the ESSA, firstly, it is employed to solve some mathematical benchmark test functions. Next, it is exploited to deal with engineering problems such as optimally designing the benchmark buildings equipped with multiple tuned mass damper (MTMD) under earthquake excitation. By comparing the obtained results with those obtained from other algorithms, it can be concluded that the proposed new ESSA algorithm not only provides very competitive results, but also it can be successfully applied to the optimal design of the MTMD.

Keywords

References

  1. Aghabalaei Baghaei K., Ghaffarzadeh H. and Younespour A. (2019), "Orthogonal function-based equivalent linearization for sliding mode control of nonlinear systems", Struct. Control Health Monit., 26(8), 2372. https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.2372.
  2. Arora, S. and Anand, P. (2019), "Chaotic grasshopper optimization algorithm for global optimization", Neural Comput. Appl., 31(8), 4385-4405. https://doi.org/10.1007/s00521-018-3343-2.
  3. Azar, B.F., Veladi, H., Raeesi, F. and Talatahari, S. (2020a), "Control of the nonlinear building using an optimum inverse TSK model of MR damper based on modified grey wolf optimizer", Eng. Struct., 214, 110657. https://doi.org/10.1016/j.engstruct.2020.110657.
  4. Azar, B.F., Veladi H., Talatahari S. and Raeesi F. (2020b), "Optimal design of magnetorheological damper based on tuning bouc-wen model parameters using hybrid algorithms", KSCE J. Civil Eng., 24(3), 867-878. https://doi.org/10.1007/s12205-020-0988-z.
  5. Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024.
  6. Bekdas, G. and Nigdeli, S.M. (2013), "Response of discussion "Estimating optimum parameters of tuned mass dampers using harmony search', Eng. Struct., 58, 265-267. https://doi.org/10.1016/j.engstruct.2013.08.015.
  7. Chey, M.H. and Kim, J.U. (2012), "Parametric control of structural responses using an optimal passive tuned mass damper under stationary Gaussian white noise excitations", Front. Struct. Civil Eng., 6(3), 267-280. https://doi.org/10.1007/s11709-012-0170-x.
  8. Den Hartog J.P. (1985), "Mechanical vibrations", Courier Corporation.
  9. Der Kiureghian A., Zhang, Y. and Li, C.C. (1994), "Inverse reliability problem", J. Eng. Mech., 120(5), 1154-1159. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:5(1154).
  10. Fadel, Miguel, L.F., Lopez, R.H. and Miguel, L.F.F. (2013), "Discussion of paper: "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9) (2011) 2716-2723. https://doi.org/10.1016/j.engstruct.2013.03.042.
  11. Fisco, N. and Adeli, H. (2011a), "Smart structures: part I-active and semi-active control", Scientia Iranica, 18(3), 275-284. https://doi.org/10.1016/j.scient.2011.05.034.
  12. Fisco, N. and Adeli, H. (2011b), "Smart structures: part II-hybrid control systems and control strategies", Scientia Iranica, 18(3), 285-295. https://doi.org/10.1016/j.scient.2011.05.035.
  13. Ghaffarzadeh, H. and Younespour, A. (2014), "Active tendons control of structures using block pulse functions", Struct. Control Health Monit., 21(12), 1453-1464. https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.1656.
  14. Ghaffarzadeh, H. and Raeisi, F. (2016), "Damage identification in truss structures using finite element model updating and imperialist competitive algorithm", Jordan J. Civil Eng., 10(2), 266-277. https://doi.org/10.12816/0026340.
  15. Hadi, M.N. and Arfiadi Y. (1998), "Optimum design of absorber for MDOF structures", J. Struct. Eng., 124(11), 1272-1280. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1272).
  16. Hadidi, A., Azar, B.F. and Shirgir, S. (2019), "Reliability assessment of semi-active control of structures with MR damper", Earthq. Struct., 17(2), 131-141. https://doi.org/10.12989/eas.2019.17.2.131.
  17. Han B., Yan, W.T., Cu, V.H., Zhu, L. and Xie, H.B. (2019), "H-TMD with hybrid control method for vibration control of long span cable-stayed bridge", Earthq. Struct., 16(3), 349-358. https://doi.org/10.12989/eas.2019.16.3.349.
  18. Kaveh A., Mohammadi S., Hosseini O.K., Keyhani A., Kalatjari V. (2015), "Optimum parameters of tuned mass dampers for seismic applications using charged system search", Iranian J. Sci. Technol. Trans. Civil Eng., 39(C1), 21-40. https://doi.org/10.22099/ijstc.2015.2739.
  19. Kaveh, A. and Talatahari, S. (2010), "A novel heuristic optimization method: charged system search", Acta Mechanica, 213(3-4), 267-289. https://doi.org/10.1007/s00707-009-0270-4.
  20. Lee, C.L., Chen, Y.T., Chung, L.L. and Wang Y.P. (2006), "Optimal design theories and applications of tuned mass dampers", Eng. Struct., 28(1), 43-53. https://doi.org/10.1016/j.engstruct.2005.06.023.
  21. Li, C. (2002), "Optimum multiple tuned mass dampers for structures under the ground acceleration based on DDMF and ADMF", Earthq. Eng. Struct. Dyn., 31(4), 897-919. https://doi.org/10.1002/eqe.128.
  22. Li, C. and Liu, Y. (2003), "Optimum multiple tuned mass dampers for structures under the ground acceleration based on the uniform distribution of system parameters", Earthq. Eng. Struct. Dyn., 32(5), 671-690. https://doi.org/10.1002/eqe.239.
  23. Li, C. and Qu, W. (2006), "Optimum properties of multiple tuned mass dampers for reduction of translational and torsional response of structures subject to ground acceleration", Eng. Struct., 28(4), 472-494. https://doi.org/10.1016/j.engstruct.2005.09.003.
  24. Mirjalili, S., Gandomi, A.H., Mirjalili S.Z., Saremi S., Faris H. and Mirjalili, S.M. (2017), "Salp swarm algorithm: A bio-inspired optimizer for engineering design problems", Advan. Eng. Software, 114, 163-191. https://doi.org/10.1016/j.advengsoft.2017.07.002.
  25. Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey wolf optimizer", Advan. Eng. Software, 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
  26. Raeesi, F., Azar, B.F., Veladi, H. and Talatahari, S. (2020), "An inverse TSK model of MR damper for vibration control of nonlinear structures using an improved grasshopper optimization algorithm", Struct., 26, 406-416. https://doi.org/10.1016/j.istruc.2020.04.026.
  27. Rana, R. and Soong, T.T. (1998), "Parametric study and simplified design of tuned mass dampers", Eng. Struct., 20(3), 193-204. https://doi.org/10.1016/S0141-0296(97)00078-3.
  28. Saaed, T.E., Nikolakopoulos, G., Jonasson, J.E. and Hedlund, H. (2015), "A state-of-the-art review of structural control systems", J. Vib. Control, 21(5), 919-937. https://doi.org/10.1177/1077546313478294.
  29. Sadek, F., Mohraz, B., Taylor, A.W. and Chung, R.M. (1997), "A method of estimating the parameters of tuned mass dampers for seismic applications", Earthq. Eng. Stuct. Dyn., 26(6), 617-636. https://doi.org/10.1002/(SICI)1096-9845(199706)26:6<617::AID-EQE664>3.0.CO;2-Z.
  30. Salvi, J. and Rizzi, E. (2015), "Optimum tuning of Tuned Mass Dampers for frame structures under earthquake excitation", Struct. Control Health Monit., 22(4), 707-725. https://onlinelibrary.wiley.com/doi/abs/10.1002/stc.1710.
  31. Salvi, J. and Rizzi, E. (2017), "Optimum earthquake-tuned TMDs: Seismic performance and new design concept of balance of split effective modal masses", Soil Dyn. Earthq. Eng., 101, 67-80. https://www.sciencedirect.com/science/article/pii/S0267726117302154. https://doi.org/10.1016/j.soildyn.2017.05.029
  32. Sapre, S. and Mini, S. (2019), "Opposition-based moth flame optimization with Cauchy mutation and evolutionary boundary constraint handling for global optimization", Soft Comput., 23, 6023-6041. https://doi.org/10.1007/s00500-018-3586-y.
  33. Sarkhel, R., Chowdhury, T.M., Das, M. and Nasipuri M. (2017), "A novel harmony search algorithm embedded with metaheuristic opposition based learning", J. Intel. Fuzzy Syst., 32(4), 3189-3199. https://doi.org/10.3233/JIFS-169262.
  34. Setareh, M. (1994), "Use of the doubly-tuned mass dampers for passive vibration control", The Proceedings of the First World Conference on Structural Control.
  35. Shan, X., Liu, K. and Sun, P.L. (2016), "Modified bat algorithm based on levy flight and opposition based learning", Sci. Programming. 2016. https://doi.org/10.1155/2016/8031560.
  36. Shirgir, S., Azar B.F. and Hadidi A. (2020), "Opposition based charged system search for parameter identification problem in a simplified Bouc-Wen model", Earthq. Struct., 18(4), 493. https://doi.org/10.12989/eas.2020.18.4.493.
  37. Tizhoosh, H.R. (2005), "Opposition-based learning: a new scheme for machine intelligence", International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06). IEEE, 695-701. https://doi.org/10.1109/CIMCA.2005.1631345.
  38. Warburton, G. (1982), "Optimum absorber parameters for various combinations of response and excitation parameters", Earthq. Eng. Struct. Dyn., 10(3), 381-401. https://doi.org/10.1002/eqe.4290100304.
  39. Xu, K. and Igusa, T. (1992), "Dynamic characteristics of multiple substructures with closely spaced frequencies", Earthq. Eng, Struct. Dyn., 21(12), 1059-1070. https://doi.org/10.1002/eqe.4290211203.
  40. Younespour, A. and Ghaffarzadeh H. (2015), "Structural active vibration control using active mass damper by block pulse functions", J. Vib. Control, 21(14), 2787-2795. https://journals.sagepub.com/doi/abs/10.1177/1077546313519285.
  41. Zhou, Y., Hao, J.K and Duval, B. (2017), "Opposition-based memetic search for the maximum diversity problem", IEEE Trans. Evolu. Comput., 21(5), 731-745. https://doi.org/10.1109/TEVC.2017.2674800.