• Title/Summary/Keyword: Excess reactivity

검색결과 64건 처리시간 0.021초

Characterization of a Neutron Beam Following Reconfiguration of the Neutron Radiography Reactor (NRAD) Core and Addition of New Fuel Elements

  • Craft, Aaron E.;Hilton, Bruce A.;Papaioannou, Glen C.
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.200-210
    • /
    • 2016
  • The neutron radiography reactor (NRAD) is a 250 kW Mark-II Training, Research, Isotopes, General Atomics (TRIGA) reactor at Idaho National Laboratory, Idaho Falls, ID, USA. The East Radiography Station (ERS) is one of two neutron beams at the NRAD used for neutron radiography, which sits beneath a large hot cell and is primarily used for neutron radiography of highly radioactive objects. Additional fuel elements were added to the NRAD core in 2013 to increase the excess reactivity of the reactor, and may have changed some characteristics of the neutron beamline. This report discusses characterization of the neutron beamline following the addition of fuel to the NRAD. This work includes determination of the facility category according to the American Society for Testing and Materials (ASTM) standards, and also uses an array of gold foils to determine the neutron beam flux and evaluate the neutron beam profile. The NRAD ERS neutron beam is a Category I neutron radiography facility, the highest possible quality level according to the ASTM. Gold foil activation experiments show that the average neutron flux with length-to-diameter ratio (L/D) = 125 is $5.96{\times}10^6n/cm^2/s$ with a $2{\sigma}$ standard error of $2.90{\times}10^5n/cm^2/s$. The neutron beam profile can be considered flat for qualitative neutron radiographic evaluation purposes. However, the neutron beam profile should be taken into account for quantitative evaluation.

Selective Reduction by Lithium Bis- or Tris(dialkylamino)aluminum Hydrides. VIII. Reaction of Lithium Tripiperidinoaluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • 차진순;이재철;주영철
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권8호
    • /
    • pp.890-895
    • /
    • 1997
  • The approximate rates and stoichiometry of the reaction of excess lithium tripiperidinoaluminum hydride (LTPDA), an alicyclic aminoaluminum hydride, with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, 25°) were examined in order to define the reducing characteristics of the reagent for selective reductions. The reducing ability of LTPDA was also compared with those of the parent lithium aluminum hydride (LAH) and lithium tris(diethylamino)aluminum hydride (LTDEA), a representative aliphatic aminoaluminum hydride. In general, the reactivity of LTPDA toward organic functionalities is weaker than LTDEA and much weaker than LAH. LTPDA shows a unique reducing characteristics. Thus, benzyl alcohol, phenol and thiols evolve a quantitative amount of hydrogen rapidly. The rate of hydrogen evolution of primary, secondary and tertiary alcohols is distinctive. LTPDA reduces aldehydes, ketones, esters, acid chlorides and epoxides readily to the corresponding alcohols. Quinones, such as p-benzoquinone and anthraquinone, are reduced to the corresponding diols without hydrogen evolution. Tertiary amides and nitriles are also reduced readily to the corresponding amines. The reagent reduces nitro compounds and azobenzene to the amine stages. Disulfides are reduced to thiols, and sulfoxides and sulfones are converted to sulfides. Additionally, the reagent appears to be a good partial reducing agent to convert primary carboxamides into the corresponding aldehydes.

TRIGA Mark-III 원자로의 노심특성계산 (Calculation of Nuclear Characteristics of the TRIGA Mark-III Reactor)

  • Chong Chul Yook;Gee Yang Han;Byung Jin Jun;Ji Bok Lee;Chang Kun Lee
    • Nuclear Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.264-276
    • /
    • 1981
  • TRIGA Mark-III 원자로의 핵특성을 실제운전상태와 유사하게 모사할 수 있는 해석절차를 개발하였다. 계산에 사용한 전산코드는 다군중성자확산 연소계산코드인 CITATION이고 채택한 중성자에너지군의 수는 TRIGA형 원자로에서 일반적으로 사용하는 7군(고속영역 3, 열영역 4)이다. 직접적인 3차원 계산이 현실적으로 불가능하므로 평면 2차원계산과 원통형 2차원 계산으로 3차원 효과를 기하였다. 연구로와 같이 노심이 작은 원자로에 대하여는 중성자평형에서 buckling에 의한 효과가 매우 크기 때문에 이를 정확하게 나타내는 방법의 개발에 중점을 두었다. 본 연구에서는 에너지군 또는 영역에 무관한 buckling을 중성자 수송이론으로 산출하는 전형적인 방법을 사용하지 않고 중성자 확산이론으로서 에너지군별, 영역별 buckling을 산출하였으며, 이를 이용하여 수행한 노심계산의 결과는 만족스러웠다. 계산시 노심은 원자로수조의 중앙부에 있는 것으로 하고 제어봉은 완전히 인출되었으며 동위원생산용 조사시료는 없는 것으로 가정하였다. 계산결과로서 연소에 따른 초과반응도가의 변화, 운전이력에 따른 Xe-135 독작용의 변화, 회전조사시료대의 반응도가를 산출하고 이를 실제 운전자료와 비교하였다. 또한 중성자속 및 출력분포, 노심 각 조사시설에서의 중성자 스펙트럼등에 대한 계산결과도 제시하였다.

  • PDF

저궤도 관측위성 임무계획(Mission Planning)을 위한 기상수치예보 GRIB Data 분석 (Analysis of NWP GRIB Data for LEO Satellite Mission Planning)

  • 서정수;서석배;배희진;김은규
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 춘계학술대회 논문집
    • /
    • pp.178-186
    • /
    • 2006
  • 기상 수치예보는 (Numerical Weather Pridiction, NWP)는 바람, 기온, 등과 같은 기상요소의 시간 변화를 나타내는 물리방정식을 컴퓨터로 풀어 미래의 대기 상태를 예상하는 과학적인 방법으로 지구를 상세한 격자 2진부호(GRIdded Binary, 이하 GRIB)로 나누어 그 격자점에서의 값으로 대기 상태를 나타낸다. 지구 각지에서의 각종 관측자료를 기초로 격자점상의 현재값을 구한다. 대용량의 격자데이터는 이진형태이어서 컴퓨터, 서버 저장장치에서 동일형태 데이터로 존재한다. 우리나라 최초의 저궤도 관측 위성인 다목적 실용위성 KOMPSAT-1호(이하, 아리랑 위성1호)는 전자광학카메라(Electro Optical Camera, EOC)를 탑재하여 1999년 12월 21일에 발사된 이후 2006년 1월 현재까지 6여년간 성공적으로 임무를 수행, 7049여회의 영상을 획득하여 국가적으로 귀중한 자료로 활용하고 있다. 아리랑 위성1호는 일일 2-3회 EOC영상을 획득하고 있으며, 임무계획(Mission Planning)은 MP(Mission Planner)가 사용자로부터 자료를 수집하여 임무분석 및 계획 서브시스템(MAPS)에 의해 계산되어진 위성의 제도예측 데이터에 촬영하고자하는 목표지점 좌표를 입력하여 자동명령생성기(KSCG)에 의해 계산된 촬영 경사각도(Tilt)값을 위성에 전송하여 목표지역의 영상을 획득하게 된다. 위성영상 획득에 있어 고가의 위성을 운영하면서 기상의 상태를 정확히 예측하여 실패없이 유효한 영상을 획득하는 것이 무엇보다 중요하다. 본 논문에서는 효율적인 위성임무계획을 위한 기상수치예보 자료를 분석하여 앞으로 발사하게 될 고해상 카메라 탑제위성인 아리랑 위성2호와 3호에 적용하고자 한다. the sufficient excess reactivity to override this poisoning must be inserted, or its concentration is decreased sufficiently when its temporary shutdown is required. As ratter of fact, these have an important influence not only on reactor safety but also on economic aspect in operation. Considering these points in this study, the shutdown process was cptimized using the Pontryagin's maximum principle so that the shutdown mirth[d was improved as to restart the reactor to its fulpower at any time, but the xenon concentration did not excess the constrained allowable value during and after shutdown, at the same time all the control actions were completed within minimum time from beginning of the shutdown.및 12.36%, $101{\sim}200$일의 경우 12.78% 및 12.44%, 201일 이상의 경우 13.17% 및 11.30%로 201일 이상의 유기의 경우에만 대조구와 삭제 구간에 유의적인(p<0.05) 차이를 나타내었다.는 담수(淡水)에서 10%o의 해수(海水)

  • PDF

Palladium(II) Aryloxides of Pd(2,6-(CH2NMe2)2C6H3)(OC6H4-X-p) (X = Me, NO2): Synthesis, Property and Reactivity towards Diphenyliodium Chloride

  • Jung, Hyun-Sang;Park, Yun-Sik;Seul, Jung-Min;Kim, Jong-Sook;Lee, Ho-Jin;Park, Soon-Heum
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권8호
    • /
    • pp.2711-2716
    • /
    • 2011
  • para-Substituted phenoxide derivatives of Pd(II) having an NCN pincer, Pd(NCN)($OC_6H_4$-p-X) (NCN = 2,6-$(CH_2NMe_2)_2C_6H_3$; X = $NO_2$ (1), Me (2)) were prepared by the reaction of Pd(NCN)($OSO_2CF_3$) with equi-molar amount of $NaOC_6H_4$-p-X. Treatment of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4$-p-Me affords the hydrogen-bonding adduct complex 3 ($2{\cdot}HOC_6H_4$-p-Me). Complex 3 can also be obtained from benzene solution of 2 in the presence of free $HOC_6H_4$-p-Me. Complex 1 does not undergo adduct formation with $HOC_6H_4-p-NO_2$ neither from metathesis reaction of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4-p-NO_2$ nor from treatment of 1 with free $HOC_6H_4-p-NO_2$. Complex 3 undergoes fast exchange of the coordinated p-cresolate with the hydrogen-bonding p-cresol. Complex 2 undergoes ${\sigma}$-ligand exchange reaction with $HOC_6H_4-p-NO_2$ to give 1. The exchange reaction, however, is irreversible as readily anticipated from their respective $pK_a$ values of the phenol derivatives. Reaction of 2 with diphenyliodium chloride quantitatively produced Pd(NCN)Cl and PhI along with liberation of O-phenylated product $PhOC_6H_4$-p-Me which was identified by GC/MS spectroscopy.

The Effect of Promoters Addition on NOx Removal by $NH_3$ over V$V_2O_5/TiO_2$

  • Lee, Keon-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E1호
    • /
    • pp.29-36
    • /
    • 2002
  • The selective catalytic reduction (SCR) reaction of promoter catalysts was investigated in this study. A pure anatase type of TiO$_2$ was used as support. Activation measurement of prepared catalysts was practiced on a fixed reactor packing by the glass bead after filling up catalysts in 1/4 inch stainless tube. The reaction temperature was measured by K-type thermocouple and catalyst was heated by electric furnace. The standard compositions of the simulated flue gas mixture in this study were as follows: NO 1,780ppm, NH$_3$1,780ppm, $O_2$1% and $N_2$ as balance gas. In this study, gas analyzer was used to measure the outgassing gas. Catalyst bed was handled for 1hr at 45$0^{\circ}C$, and the reactivity of the various catalyst was determined in a wide temperature range. Conversion of NH$_3$/NO ratio and of $O_2$ concentration was practiced at 1,1.5 and 2, respectively. The respective space velocity were as follows . 10,000, 15,000 and 17,000 hr-1. It was found that the maximum conversion temperature range was in a 5$0^{\circ}C$. It was also found toi be very sensitive at space velocity, $O_2$ concentration, and NH$_3$/NO ratio. We also noticed that the maximum conversion temperature of (W, Mo, Sn) -V$_2$O$_{5}$/TiO$_2$ catalysts was broad. Specially WO$_3$-V$_2$O$_{5}$TiO$_2$2 catalyst appeared nearly 100% conversion at not only above 30$0^{\circ}C$ ut also below 25$0^{\circ}C$. At over 30$0^{\circ}C$, NH$_3$ oxidation decreased with decrease of surface excess oxygen. In addition, WO$_3$-V$_2$O$_{5}$TiO$_2$ catalyst did not appear to affect space velocity, $O_2$ concentration, and NH$_3$/NO ratio.ratio.

Red-Orange Emissive Cyclometalated Neutral Iridium(III) Complexes and Hydridoiridium(III) Complex Based on 2-Phenylquinoxaline : Structure, Photophysics and Reactivity of Acetylacetone Towards Cyclometalated Iridium Dimer

  • Sengottuvelan, Nallathambi;Yun, Seong-Jae;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4321-4326
    • /
    • 2011
  • A new series of heteroleptic cyclometalated iridium(III) complexes has been synthesized and characterized by absorption, emission and cyclic voltammetry studies: $(pqx)_2Ir(acac)$ (1), $(dmpqx)_2Ir(acac)$ (2) and $(dfpqx)_2Ir(acac)$ (3) where pqx=2-phenylquinoxalinate, dmpqx=2-(2,4-dimethoxyphenyl)quinoxalinate, dfpqx=2-(2,4-difluorophenyl) quinoxalinate and acac=acetylacetonate anion. The reaction of excess acetylacetone with ${\mu}$-chloride-bridged dimeric iridium complex, $[(C\^N)_2Ir({\mu}-Cl)]_2$, gives a complex 1 and an unusual hydridoiridium(III) complex, $(pqx)IrH(acac)_2$ (4). The complex 1, 2 and 3 show their emissions in an orangered region (${\lambda}_{PL,max}$ = 583-616 nm), and the emission maxima can be tuned by the change of substituent at phenyl ring of 2-phenylquinoxaline ligand. The phosphorescent line shape indicates that the emissions originate predominantly from $^3MLCT$ states with little admixture of ligand-based $^3({\pi}-{\pi}^*)$ excited states. The structures of complex 3 and 4 are additionally characterized by a single crystal X-ray diffraction method. The complex 3 shows a distorted octahedral geometry around iridium(III) metal ion. A strong trans influence of the phenyl ring is examined. In complex 4, there are two discrete molecules which are mirror images each other at the ratio of 1:1 in an unit cell. We propose that the phosphorescent complex 1, 2 and 3 are possible candidates for the phosphors in OLEDs applications.

Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - A preliminary design

  • Alameri, Saeed A.;King, Jeffrey C.;Alkaabi, Ahmed K.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.248-257
    • /
    • 2020
  • This study presents an initial design for a novel system consisting in a coupled nuclear reactor and a phase change material-based thermal energy storage (TES) component, which acts as a buffer and regulator of heat transfer between the primary and secondary loops. The goal of this concept is to enhance the capacity factor of nuclear power plants (NPPs) in the case of high integration of renewable energy sources into the electric grid. Hence, this system could support in elevating the economics of NPPs in current competitive markets, especially with subsidized solar and wind energy sources, and relatively low oil and gas prices. Furthermore, utilizing a prismatic-core advanced high temperature reactor (PAHTR) cooled by a molten salt with a high melting point, have the potential in increasing the system efficiency due to its high operating temperature, and providing the baseline requirements for coupling other process heat applications. The present research studies the neutronics and thermal hydraulics (TH) of the PAHTR as well as TH calculations for the TES which consists of 300 blocks with a total heat storage capacity of 150 MWd. SERPENT Monte Carlo and MCNP5 codes carried out the neutronics analysis of the PAHTR which is sized to have a 5-year refueling cycle and rated power of 300 MWth. The PAHTR has 10 metric tons of heavy metal with 19.75 wt% enriched UO2 TRISO fuel, a hot clean excess reactivity and shutdown margin of $33.70 and -$115.68; respectively, negative temperature feedback coefficients, and an axial flux peaking factor of 1.68. Star-CCM + code predicted the correct convective heat transfer coefficient variations for both the reactor and the storage. TH analysis results show that the flow in the primary loop (in the reactor and TES) remains in the developing mixed convection regime while it reaches a fully developed flow in the secondary loop.

저분자형 폴리에테르 변성 실리콘의 합성에 관한 연구 (Study on the Synthesis of Low Molecular Weight Silicones Modified with Polyethers)

  • 정대원
    • 공업화학
    • /
    • 제19권3호
    • /
    • pp.332-337
    • /
    • 2008
  • 트리실록산(1,1,1,3,5,5,5-heptamethyl trisiloxane, HMTS)과 말단에 불포화기를 포함하는 폴리옥시에틸렌(unsaturated poly(oxyethylene), UPOE)의 수소규소화 반응을 Speier 촉매 하에서 수행하여, 두 반응물의 몰비 변화에 따른 반응성 및 생성물(HMTS-POE)의 구조 차이를 FT-IR 및 $^1H-NMR$을 이용하여 분석하였다. UPOE를 과량의 HMTS와 수소규소화 반응시킨 후 진공 건조 과정을 통하여 미반응 HMTS를 제거함으로써 미반응 UPOE 및 HMTS이 잔존하지 않는 HMTS-POE를 합성할 수 있었다. 또한 다양한 분자량의 UPOE를 사용하여 다양한 HMTS-POE를 합성하여 표면장력을 비교 분석한 결과, EO 함량 49~57%의 HMTS-POE가 계면활성 특성의 저분자형 폴리에테르 변성 실리콘으로의 응용 가능성을 나타내었다.

Reaction of Lithium Tris(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Jae Cheol Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권4호
    • /
    • pp.469-475
    • /
    • 1993
  • The approximate rates and stoichiometry of the reaction of excess lithium tris(diethylamino)aluminum hydride (LTDEA) with selected organic compounds containing representative functional groups under standardized condition (tetrahydrofuran, 0$^{\circ}C$) were examined in order to define the characteristics of the reagent for selective reductions. The reducing ability of LTDEA was also compared with those of the parent lithium aluminum hydride (LAH) and lithium tris(dibutylamino)aluminum hydride (LTDBA). In general, the reactivity toward organic functionalities is in order of LAH${\gg}$LTDEA${\geq}$LTDBA. LTDEA shows a unique reducing characteristics. Thus, benzyl alcohol and phenol evolve hydrogen slowly. The rate of hydrogen evolution of primary, secondary, and tertiary alcohols is distinctive: 1-hexanol evolves hydrogen completely in 6 h, whereas 3-hexanol evolves hydrogen very slowly. However, 3-ethyl-3-pentanol does not evolve any hydrogen under these reaction conditions. Primary amine, such as n-hexylamine, evolves only 1 equivalent of hydrogen. On the other hand, thiols examined are absolutely inert to this reagent. LTDEA reduces aldehydes, ketones, esters, acid chlorides, and epoxides readily to the corresponding alcohols. Quinones, such as p-benzoquinone and anthraquinone, are reduced to the corresponding diols without hydrogen evolution. However, carboxylic acids, anhydrides, nitriles, and primary amides are reduced slowly, where as tertiary amides are readily reduced. Finally, sulfides and sulfoxides are reduced to thiols and sulfides, respectively, without evolution of hydrogen. In addition to that, the reagent appears to be an excellent partial reducing agent to convert esters, primary carboxamides, and aromatic nitriles into the corresponding aldehydes. Free carboxylic acids are also converted into aldehydes through treatment of acyloxy-9-BBN with this reagent in excellent yields.