• Title/Summary/Keyword: Exceedance Probability

Search Result 118, Processing Time 0.021 seconds

Application of probabilistic method to determination of aerodynamic force coefficients on tall buildings

  • Yong Chul Kim;Shuyang Cao
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.249-261
    • /
    • 2023
  • Aerodynamic force coefficients are generally prescribed by an ensemble average of ten and/or twenty 10-minute samples. However, this makes it difficult to identify the exact probability distribution and exceedance probability of the prescribed values. In this study, 12,600 10-minute samples on three tall buildings were measured, and the probability distributions were first identified and the aerodynamic force coefficients corresponding to the specific non-exceedance probabilities (cumulative probabilities) of wind load were then evaluated. It was found that the probability distributions of the mean and fluctuating aerodynamic force coefficients followed a normal distribution. The ratios of aerodynamic force coefficients corresponding to the specific non-exceedance probabilities (Cf,Non) to the ensemble average of 12,600 samples (Cf,Ens), which was defined as an adjusting factor (Cf,Non/Cf,Ens), were less than 2%. The effect of coefficient of variation of wind speed on the adjusting factor is larger than that of the annual non-exceedance probability of wind load. The non-exceedance probabilities of the aerodynamic force coefficient is between PC,nonex = 50% and 60% regardless of force components and aspect ratios. The adjusting factors from the Gumbel distribution were larger than those from the normal distribution.

Monte Carlo analysis of the induced cracked zone by single-hole rock explosion

  • Shadabfar, Mahdi;Huang, Hongwei;Wang, Yuan;Wu, Chenglong
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.289-300
    • /
    • 2020
  • Estimating the damage induced by an explosion around a blast hole has always been a challenging issue in geotechnical engineering. It is difficult to determine an exact dimension for damage zone since many parameters are involved in the formation of failures, and there are some uncertainties lying in these parameters. Thus, the present study adopted a probabilistic approach towards this problem. First, a reliability model of the problem was established and the failure probability of induced damage was calculated. Then, the corresponding exceedance risk curve was developed indicating the relation between the failure probability and the cracked zone radius. The obtained risk curve indicated that the failure probability drops dramatically by increasing the cracked zone radius so that the probability of exceedance for any crack length greater than 4.5 m is less than 5%. Moreover, the effect of each parameter involved in the probability of failure, including blast hole radius, explosive density, detonation velocity, and tensile strength of the rock, was evaluated by using a sensitivity analysis. Finally, the impact of the decoupling ratio on the reduction of failures was investigated and the location of its maximum influence was demonstrated around the blast point.

Exceedance probability as a tool to evaluate the wind environment of urban areas

  • Bady, Mahmoud;Kato, Shinsuke;Ishida, Yoshihiro;Huang, Hong;Takahashi, Takeo
    • Wind and Structures
    • /
    • v.11 no.6
    • /
    • pp.455-478
    • /
    • 2008
  • The present study aims to estimate the wind ventilation performance for pedestrian level domains from the air quality point of view. Three typical models of a dense urban area were considered and numerically simulated in order to examine the effects of the geometry of such models on wind flow characteristics, which in turn affect the air quality, within the pedestrian domain of a street canyon located within this area. The calculated flow fields were employed to estimate the exceedance probabilities within the study domain using a new approach: air exchange rate within the domain. The study has been applied to nine cities in Japan: Tokyo, Osaka, Sapporo, Niigata, Fukuoka, Nagoya, Sendai, Yokohama, and Kyoto, based on their mean wind velocity data. The results demonstrated that the exceedance probability analysis of the pedestrian wind environment could be a valuable tool during the design stage of inhabited areas for the evaluation of pollutant-removal efficiency by the applied wind. Also, the calculated probabilities demonstrated substantial dependence on both the geometry of building arrays and the wind conditions of the nine cities.

Development and Application of Coliform Load Duration Curve for the Geum River (금강에 대한 대장균 부하 지속곡선의 개발 및 적용)

  • Kim, Geonha;Yoon, Jaeyoung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.516-519
    • /
    • 2005
  • An useful protocol coiled load duration curve methodology to estimate contaminant loading to a river on an exceedance probability scale was developed in this research. The technique was further applied to estimate total coliform loading to the Geum River, using the daily mean flow rate and total coliform concentration data during January, 1996 and July, 2004 for the Gongju where an automated monitoring station is located. Drought flow of the Gongju (=50.3 cms) was equivalent to 40% on an exceedance probability scale. Load duration curve for total coliform loading at the Gongju was constructed. Standard duration curve was constructed with the water quality criteria for the class 2 (total coliform concentration = 1000 MPN/100 mL). By plotting load duration curve with standard duration curve, it could be revealed that water quality do not meet the desired water quality for 47% on an exceedance probability scale. If linearity between flow rate and coliform concentration is assumed, it can be interpretated that water quality exceeds desired criteria when average mean flow rate is over 51 cms.

Study on the flood frequency analysis for the annual exceedance series -Centering along the Geum River basin- (연초과치 계열의 홍수빈도 분석에 관한 연구 -금강유역을 중심으로-)

  • 박영근;이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.1
    • /
    • pp.53-62
    • /
    • 1982
  • This study was attempted to find best fitted distribution and the equations for probable maximum flow with the evaluation of parameters by the method of moment for the rat- ional design of hydraulic structures in the annual exceedance series. Six subwatersheds were selected as studying basins along Geum River basin. The results obtained through this study were analyzed and summarized as follows. 1. Fitted probability distribution was showed in the order of Three Parameter Lognorm al, Type 1 Extremal, Exponential, Pearson Type III, and Log Pearson Type I distribu- tion as the results of x$^2$ goodness of fit test. 2. Kolmogorov-Smirnov test showed in the order of Three Parameter Lognormal, Exp- onential' Pearson Type III, Log Pearson Type III and Type 1 Extremal distribution for the fitted probability distribution. 3. It can be concluded that Three parameter Lognormal distribution is a best fitted one among some other distributions out of respect for each both tests. An Exponential distribution was proposed as a suitable one by Chow, V.T. showeci lower fittness than that of Three Parameter Lognormal in Geum River basin. 5. Probable flood flow equations followins the return periods for each station were obt- ained by Three Parameter Lognormal distribution. 6. It is urgently essential that best fitted probability distribution should be established for the annual exceedance series in the main river systems of Korea.

  • PDF

Exceedance probability of allowable sliding distance of caisson breakwaters in Korea (국내 케이슨 방파제의 허용활동량 초과확률)

  • Kim, Seung-Woo;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.6
    • /
    • pp.495-507
    • /
    • 2009
  • The expected sliding distance for the lifetime of a caisson breakwater has a limitation to be used as the stability criterion of the breakwater. Since the expected sliding distance is calculated as the mean of simulated sliding distances for the lifetime, there is possibility for the actual sliding distance to exceed the expected sliding distance. To overcome this problem, the exceedance probability of the allowable sliding distance is used to assess the stability of sliding. Latin Hypercube sampling and Crude Monte Carlo simulation were used to calculate the exceedance probability. The doubly-truncated normal distribution was considered to complement the physical disadvantage of the normal distribution as the random variable distribution. In the case of using the normal distribution, the cross-sections of Okgye, Hwasun, and Donghae NI before reinforcement were found to be unstable in all the limit states. On the other hand, when applying the doubly-truncated normal distribution, the cross-sections of Hwasun and Donghae NI before reinforcement were evaluated to be unstable in the repairable limit state and all the limit states, respectively. Finally, the shortcoming of the expected sliding distance as the stability criterion was investigated, and we reasonably assessed the stability of sliding of caissons by using the exceedance probability of allowable sliding distance for the caisson breakwaters in Korea.

Stochastic River Water Quality Management by Dynamic Programming (동적계획법을 이용한 추계학적 하천수질관리)

  • Cho, Jae-Heon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.87-95
    • /
    • 1997
  • A river water quality management model was made by Dynamic programming. This model optimizes the wastewater treatment cost of the application area, and computed water quality with it must meet the water quality standard. And this model takes into consideration tributary input, wastewater treatment plant effluent, withdrawls for several purposes. Modified Streeter-Phelps equation was used to calculate BOD and DO. Optimization problem was solved with particular exceedance probability flow, and the water quality of each point was calculated with the decided treatment efficiencies. At that time, the probability satisfying the water quality standard of constraints to the exceedance probability of the flow. The developed model was applied to the lower part of the Han-River. The reliability to meet the water quality standard is 70 % when 4 wastewater treatment plants of Seoul City are operated by activated sludge system at autumn of the year 2001. Treatment cost of this case is 121.288 billion won per year.

  • PDF

Structural safety reliability of concrete buildings of HTR-PM in accidental double-ended break of hot gas ducts

  • Guo, Quanquan;Wang, Shaoxu;Chen, Shenggang;Sun, Yunlong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1051-1065
    • /
    • 2020
  • Safety analysis of nuclear power plant (NPP) especially in accident conditions is a basic and necessary issue for applications and commercialization of reactors. Many previous researches and development works have been conducted. However, most achievements focused on the safety reliability of primary pressure system vessels. Few literatures studied the structural safety of huge concrete structures surrounding primary pressure system, especially for the fourth generation NPP which allows existing of through cracks. In this paper, structural safety reliability of concrete structures of HTR-PM in accidental double-ended break of hot gas ducts was studied by Exceedance Probability Method. It was calculated by Monte Carlo approaches applying numerical simulations by Abaqus. Damage parameters were proposed and used to define the property of concrete, which can perfectly describe the crack state of concrete structures. Calculation results indicated that functional failure determined by deterministic safety analysis was decided by the crack resistance capability of containment buildings, whereas the bearing capacity of concrete structures possess a high safety margin. The failure probability of concrete structures during an accident of double-ended break of hot gas ducts will be 31.18%. Adding the consideration the contingency occurrence probability of the accident, probability of functional failure is sufficiently low.

Focal Depth Factors in the PSH Analysis

  • Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.83-86
    • /
    • 1998
  • The results from the Individual Plant Examination of External Event of Yonggwyang nuclear power plants, unit 3 & 4, in Korea have shown that the high degree of diversities of the experts' opinions on seismicity and attenuation models is su, pp.sed to be generic cause of uncertainty of APEs(annual exceedance probability) in the PAHA(probabilistic seismic hazard analysis). This study investigated the sensitivity of the focal depth, which is one of the most uncertain seismicity parameters in Korea, Significant differences in resultant values of annual exceedance probabilities and much more symmetrical shape of the resultant PDFs(probability density functions), in case of consideration of focal depth, are found. These two results suggest that, even for the same seismic input data set including the seismicity models and ground motion attenuation models, to consider focal depth additionally for probabilistic seismic hazard analysis evaluation makes significant influence on the distributions of uncertainties and probabilities of exceedance per year for the whole ranges of seismic hazard levels. These facts suggest that it is necessary to derive focal depth parameter more effectively from the historical and instrumental documents on earthquake phenomena in Koran Peninsula for the future study of PSHA.

  • PDF

Seismic performance-based optimal design approach for structures equipped with SATMDs

  • Mohebbi, Mohtasham;Bakhshinezhad, Sina
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.95-107
    • /
    • 2022
  • This paper introduces a novel, rigorous, and efficient probabilistic methodology for the performance-based optimal design (PBOD) of semi-active tuned mass damper (SATMD) for seismically excited nonlinear structures. The proposed methodology is consistent with the modern performance-based earthquake engineering framework and aims to design reliable control systems. To this end, an optimization problem has been defined which considers the parameters of control systems as design variables and minimization of the probability of exceeding a targeted structural performance level during the lifetime as an objective function with a constraint on the failure probability of stroke length damage state associated with mass damper mechanism. The effectiveness of the proposed methodology is illustrated through a numerical example of performance analysis of an eight-story nonlinear shear building frame with hysteretic bilinear behavior. The SATMD with variable stiffness and damping have been designed separately with different mass ratios. Their performance has been compared with that of uncontrolled structure and the structure controlled with passive TMD in terms of probabilistic demand curves, response hazard curves, fragility curves, and exceedance probability of performance levels during the lifetime. Numerical results show the effectiveness, simplicity, and reliability of the proposed PBOD method in designing SATMD with variable stiffness and damping for the nonlinear frames where they have reduced the exceedance probability of the structure up to 49% and 44%, respectively.