• 제목/요약/키워드: Excavators

검색결과 107건 처리시간 0.022초

헤드 트래킹 시스템을 이용한 가상 굴삭기의 편의 관측 시스템 개발 (Development of the Flexible Observation System for a Virtual Reality Excavator Using the Head Tracking System)

  • 레광환;정영만;웬치탄;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권2호
    • /
    • pp.27-33
    • /
    • 2015
  • Excavators are versatile earthmoving equipment that are used in civil engineering, hydraulic engineering, grading and landscaping, pipeline construction and mining. Effective operator training is essential to ensure safe and efficient operating of the machine. The virtual reality excavator based on simulation using conventional large size monitors is limited by the inability to provide a realistic real world training experience. We proposed a flexible observation method with a head tracking system to improve user feeling and sensation when operating a virtual reality excavator. First, an excavation simulator is designed by combining an excavator SimMechanics model and the virtual world. Second, a head mounted display (HMD) device is presented to replace the cumbersome large screens. Moreover, an Inertial Measurement Unit (IMU) sensor is mounted to the HMD for tracking the movement of the operator's head. These signals consequently change the virtual viewpoint of the virtual reality excavator. Simulation results were used to analyze the performance of the proposed system.

메인 컨트롤밸브의 해석모델 개발 및 검증 (Development and Verification of Analytical Model of a Main Control Valve)

  • 김동명;이정민;정원지;장주섭
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권2호
    • /
    • pp.39-48
    • /
    • 2015
  • In order to control the actuators of hydraulic machinery such as excavators, various control valves are typically assembled in a single block. Such a control block is called a main control valve(MCV). In this paper, we analyzed the working principle and the particular purpose of the design of all valves included in the MCV system. To Examine the reliability of the analysis model, the pressure drop of the MCV at each port was measured. The authors developed an analytical model of the control valve(main spool, load poppet, pressure relief, make up, and regeneration). The authors considered the notch shape of the spool while developing the analytical models of the main spool valve. Most importantly, at the stage before the analysis model was applied in the design tuning, the reliability was ensured by comparing the analysis results with the test results. This paper showed a process of developing an analysis model that can be utilized in the design and tuning stages.

건설중장비 제품개발 초기 단계에서의 라디에이터 진동 설계 (Design for Vibration of Radiator at the Early Stage of Product Development Process in Construction Equipment)

  • 강현석;김성환;강종민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.271-276
    • /
    • 2011
  • The working conditions of construction equipments such as excavators, wheel loaders and haulers are very tough and severe in fact. To design main components of construction equipment under the severe environment, it's important for engineers to consider design for vibration durability point of view at the early stage of product development process. Radiator as a cooling unit of construction equipment is one of critical components to apply design for vibration. We present a design for vibration process and methodology on the radiator system in construction equipment industries. From the natural frequency and the random vibration analysis based on field vibration test data, we could find current status of radiator layout design to develop and made best layout specification of radiator design to decide for product development process at the early stage.

  • PDF

Nondestructive Evaluation of the Defects in Composite-sintered Bushes Using Ultrasonics

  • Im, Kwang-Hee;Kim, Ki-Youl;Shin, Ki-Taek;Lee, Han-Hee;Jung, Il-Woong;Kang, To;Cho, Hyun-Joon
    • 한국생산제조학회지
    • /
    • 제21권6호
    • /
    • pp.1013-1017
    • /
    • 2012
  • Advanced composite-sintered bushings are widely utilized in the areas of excavators and injection molding machines as a journal bearing. Since the bearings are mainly used under high loads, service life should be long and the stored oil of inner bushings has to be continually fed into the bearing. The composite-sintered bushings are consisted of the two different materials; outer steel materials and inner porous sintered materials respectively. High temperature diffusion bonding has been applied for holding the both materials of the bushing together. Therefore, it is very important that the bonding reliability has to be assured and evaluated in manufacturing process. Finite element method (FEM) is performed in order to evaluate the minimum allowable flaw sizes that are possibly generated in the composite-sintered bushings. Additionally, the composite-sintered bushings were undergone ultrasonic C-scan tests to find out the size of inherent flaws through artificially simulated UT signal analysis.

VHVI 기유의 제품 적용 기술에 관한 연구 - 건설 중장비용 유압유 (A Study On the Application of VHVI Base Oil - Hydraulic Fluid for Construction Equipments)

  • 권완섭;문우식;윤한희;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.152-157
    • /
    • 2003
  • This study represents the newly advanced formulation of hydraulic fluids for extended drain interval and introduces the performance results of used oil samples from various excavators. The used oil samples, in this paper show that there is a sharp change in viscosity drop and moderate additive depletion when viscosity index of hydraulic oil is very high. For the extension of hydraulic fluid life, it is necessary to improve the stability of viscosity and oxidation. New target properties from the used oil analysis were proposed for extended life. Performance of newly developed hydraulic oil based on used oil analysis is compared with previously used one. The properties of new formulation are the viscosity index of 140 and improved thermal stability consists of VHVI base oil. Field test results showed the possibility of extension of fluid life. Additionally, for development of high performance product, new required properties and performances were discussed.

  • PDF

소형 굴삭기의 주행구동유니트 시험평가에 관한 연구 (A Study on Track Drive Unit Test and Evaluation for Mini Excavators)

  • 이기천;이용범;최병오
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제15권3호
    • /
    • pp.139-144
    • /
    • 2015
  • Track drive unit adopted in the small sized excavator generally have been used in the construction equipment under the 10 tons as the driving device with forwarding and reversing of excavator. It is required to study the accelerated life test applied by over torque and speed to test the durability life test reflected the many driving modes of small sized excavator and also need to equip the comprehensive performance and life test equipments to do the various performance tests. This study had analyzed the failure modes of the components, and calculated the equivalent loads investigated the used loads in the real field conditions and elicits the acceleration factor adopted in the inverse power model. Also, this study have considered the changes of the acceleration factor and the durability test time in the case of the rotary group and the bearing through analyzing the main failure modes. It was calculated the no failure test time about 2 samples and confidence level 90% and elicited the accelerated life time 720 hours.

적응형 슬라이딩 모드 제어를 이용한 위상 궤적 해석 기반 굴삭기의 안전제어 알고리즘 개발 (Phase Portrait Analysis-Based Safety Control for Excavator Using Adaptive Sliding Mode Control Algorithm)

  • 오광석;서자호;이근호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권3호
    • /
    • pp.8-13
    • /
    • 2018
  • This paper presents a phase portrait analysis-based safety control algorithm for excavators, using adaptive sliding mode control. Since working postures and material types cause the excavator's rotational inertia to vary, the rotational inertia was estimated, and this estimation was used to design an adaptive sliding mode controller for collision avoidance of the excavator. In order to estimate the rotational inertia, the recursive least-squares estimation with multiple forgetting was applied with the information of the swing velocity of the excavator. For realistic evaluation, an actual working scenario-based performance evaluation was conducted. Based on the estimated rotational inertia and an analysis of estimation errors, sliding mode control inputs were computed. The actual working scenario-based performance evaluation of the designed safety algorithm was conducted, and the results showed that the developed safety control algorithm can efficiently avoid a collision with an object in consideration of rotational inertia variations.

주행 구동 유니트의 가속 수명 시험 및 분석 (Accelerated Life Test and Analysis of Track Drive Unit for an Excavator)

  • 이용범;박종호
    • 유공압시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.1-7
    • /
    • 2005
  • For the reliability evaluation of the track drive unit(TDU), firstly, we analyzed the major failure modes through FMEA(failure mode & effects analysis), FTA(failure tree analysis), and 2-stage QFD(quality function deployment), and then quantitatively determined the priority order of test items. The Minitab analysis was also performed for prediction of life distribution and parameters of TDU by use of field failure data collected from 430 excavators for two years. In addition, we converted the fluctuation load in field conditions into the equivalent load, and for evaluation of the accelerated lift by the cumulative fatigues, the equivalent load is again divided into the fluctuation load by reference of test time. And then, by use of the test method in this paper, the acceleration factor(AF) of needle bearing inside planetary gear which is the most weakly designed part of TDU is achieved as 5.3. This paper presents the quantitative selection method of test items for reliability evaluation, the determination method of the accelerated life test time, and the method of non-failure test time based on a few of samples. And, we proved the propriety of the proposed methods by experiments using a TDU for a 30 ton excavator.

  • PDF

Online Estimation of Rotational Inertia of an Excavator Based on Recursive Least Squares with Multiple Forgetting

  • Oh, Kwangseok;Yi, Kyong Su;Seo, Jaho;Kim, Yongrae;Lee, Geunho
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권3호
    • /
    • pp.40-49
    • /
    • 2017
  • This study presents an online estimation of an excavator's rotational inertia by using recursive least square with forgetting. It is difficult to measure rotational inertia in real systems. Against this background, online estimation of rotational inertia is essential for improving safety and automation of construction equipment such as excavators because changes in inertial parameter impact dynamic characteristics. Regarding an excavator, rotational inertia for swing motion may change significantly according to working posture and digging conditions. Hence, rotational inertia estimation by predicting swing motion is critical for enhancing working safety and automation. Swing velocity and damping coefficient were used for rotational inertia estimation in this study. Updating rules are proposed for enhancing convergence performance by using the damping coefficient and forgetting factors. The proposed estimation algorithm uses three forgetting factors to estimate time-varying rotational inertia, damping coefficient, and torque with different variation rates. Rotational inertia in a typical working scenario was considered for reasonable performance evaluation. Three simulations were conducted by considering several digging conditions. Presented estimation results reveal the proposed estimation scheme is effective for estimating varying rotational inertia of the excavator.

돌쌓기 및 헐기 공사의 공사비산정기준 적용실태 분석 (Analysis on the Application of Estimation Criteria for Construction Cost of Masonry and Demolition)

  • 오재훈;안방율
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.234-235
    • /
    • 2019
  • In the stacking and pitching items of the stone masonry and demolition process presented by 2018's standard of estimate, 7 estimating standards are presented according to the depth of masonry stone, and it is presented that the quantity per unit increases as the depth of masonry stone grows. As a result of analyzing the application status in the site, it is shown that 2 or 3 stones are mainly used according to the stone sizes regardless of the depth of masonry stone, and that as the size of the stone becomes larger, the quantity per unit decreases due to the size per square meter(㎡). Also, in most of sites, machine construction is mainly carried out by excavators with clampers attached to them. Therefore, in the 2019's application standard of estimate, it is analyzed that the size is simplified down to 3 sizes reflecting the site application status and that it is revised as a standard reflecting the result that as the stone size becomes bigger, the productivity increases.

  • PDF