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Abstract: This study presents an online estimation of an excavator’s rotational inertia by using recursive least 

square with forgetting. It is difficult to measure rotational inertia in real systems. Against this background, 

online estimation of rotational inertia is essential for improving safety and automation of construction equipment 

such as excavators because changes in inertial parameter impact dynamic characteristics. Regarding an excavator, 

rotational inertia for swing motion may change significantly according to working posture and digging 

conditions. Hence, rotational inertia estimation by predicting swing motion is critical for enhancing working 

safety and automation. Swing velocity and damping coefficient were used for rotational inertia estimation in this 

study. Updating rules are proposed for enhancing convergence performance by using the damping coefficient and 

forgetting factors. The proposed estimation algorithm uses three forgetting factors to estimate time-varying 

rotational inertia, damping coefficient, and torque with different variation rates. Rotational inertia in a typical 

working scenario was considered for reasonable performance evaluation. Three simulations were conducted by 

considering several digging conditions. Presented estimation results reveal the proposed estimation scheme is 

effective for estimating varying rotational inertia of the excavator.
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Nomenclature

b : damping coefficient

b : nominal damping coefficient

b̂ : estimated damping coefficient

F : state transition matrix

G : process noise matrix

H : observation matrix

I : identity matrix

tJ : total swing inertia that include material inertia 

loaded in the bucket

ˆ
tJ : estimated swing inertia

K : Kalman gain matrix

0P : initial error covariance

kQ : covariance matrix of the process noise

T : sampling period

fT : Coulomb friction torque

swT : swing torque

tT : total torque
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t̂T : combined torque

kv : measurement noise

kw : process noise

x : state vector

0x̂ : initial state

y : measured output vector

i : forgetting factors, i=1,2,3

arm : arm angle

boom : boom angle

bucket : bucket angle

sw : swing velocity

ˆ
sw : estimated swing velocity

sw : swing acceleration

ˆ
sw : estimated swing acceleration

1. Introduction

Construction equipment such as excavators performs 

various tasks at construction sites. This is realized by 

using its working parts in coordination with nearby 

workers. Further, the excavator is usually operated in a 

stationary state, while its working parts can rotate 360°. 

Dynamic characteristics such as inertial parameters and 

friction of the excavator may change easily because the 

equipment is used with various digging materials and its 

working postures may vary. Various studies have been 

conducted on applications of construction equipment 

systems from the viewpoint of improving safety and 

automation.

Tafazoli et al.1) developed a novel yet simple 

approach for experimentally determining link parameters 

and friction coefficients for a typical excavator arm. 

Tan et al. 2) proposed a fast and robust technique to 

estimate the unknown parameters of soil mechanics 

equations by minimizing the error between measured 

failure forces and estimated forces for the experimental 

identification of soil. Lee et al. 3) provided solutions to 

problems arising during the modeling of hydraulic 

excavators; these solutions were based on the bond 

graph method, the top-down and bottom-up methods, 

and the developed modeling software.

This paper proposes an online inertial parameter 

estimation scheme for excavators based on recursive 

least squares with multiple forgetting. The working parts 

of an excavator comprise its body, boom, arm, and 

bucket with four degrees of freedom; the working parts 

can be moved to change the posture of the excavator.

Fig. 1 Working parts (body, boom, arm, and bucket)

As the working posture, material load, and type of 

attachments such as bucket, ripper, and crusher 

influence the dynamic characteristics of the excavator, it 

is necessary to estimate the inertial parameter for swing 

motion in order to predict the behavior for improving 

safety and automation. Therefore, in this study, to 

estimate the rotational inertia, recursive least squares 

algorithm with multiple forgetting factors was used, and 

an updating rule was adopted for convergence 

performance. Multiple forgetting factors were defined 

considering the change rate of parameters that are 

required to be estimated. The damping coefficient in 

swing dynamics was also considered in the updating 

rule in this study.

The updating rule for the forgetting factor considered 

the convergence delay; this factor was applied for 

improving estimation performance. The performance 

evaluation of the estimation algorithm was conducted in 

a typical working scenario in Matlab/Simulink 

environment. The results show that the proposed 

estimation algorithm effectively estimates the actual 

moment of inertia during swing motion.

The rest of this paper is organized as follows: 

Section 2 describes the investigation of variations in the 

inertial parameter of the excavator. Section 3 proposes a 

swing inertia estimation method. Section 4 discusses the 

Matlab/Simulink-based evaluation of the estimation 

performance. Finally, the concluding remarks are 

provided in Section 5.
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2. Investigation of Variations in 

Rotational Inertia

Various types of attachments such as crushers, 

grapples, and buckets, are used with an excavator. The 

excavator also works with several types of materials. 

The masses of different materials and attachments vary 

greatly and greatly affect the inertial property of the 

excavator. Furthermore, the rotational inertia for the 

swing motion may change because of changes in the 

working posture of the excavator. Therefore, the 

variation in the moment of inertia for swing motion 

was investigated to emphasize the need for estimation 

of inertia. Fig. 2 shows the materials and attachments 

considered in the investigation.

Division Bucket Crusher

Attachment

Material 0 kg 423 kg 0 kg 423 kg

Fig. 2 Materials and attachments considered in 

the investigation

In addition to buckets, crushers were also considered 

in the investigation because crushers are heavier than 

buckets, and hence, there is a large difference in the 

inertial parameters of excavators with buckets and those 

with crushers. Material and attachment specifications 

were determined for 5.5-ton class excavators. The 

moment of inertia was computed mathematically using 

the actual dimensions of the excavator. Fig. 3 describes 

the working postures for computation and the 

normalized moment of inertia with respect to the 

working posture, material, type, and attachment. All 

computed results shown in Fig. 3 were normalized for 

easy comparison. The rotational inertia for swing 

motion changed significantly with the attachment and 

material conditions. This observation provides 

motivation to study the methodology for estimating 

rotational inertia. The next section describes the 

rotational inertia estimation scheme.

(a) Working postures 1 and 2

(b) Comparison of analytical results for rotational inertia

Fig. 3 Working posture of the excavator and 

analytical rotational inertia

All computed results shown in Fig. 3 were 

normalized for easy comparison. The rotational inertia 

for swing motion of the excavator changed significantly 

with the attachment and material conditions. This 

observation provides motivation to study the 

methodology for estimating rotational inertia. The next 

section describes the rotational inertia estimation 

scheme.

3. Rotational Inertia Estimation

In order to estimate the swing inertia of excavator, 

this study proposes the recursive least square (RLS) 

estimation method with nominal parameter-based 

updating and multiple forgettings4, 5). A model schematic 

for estimating inertia is shown in Fig. 4.

Fig. 4 Schematic of the model for estimating the 

rotational inertia of an excavator
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ˆ
sw  and 

ˆ
sw  are computed using the Kalman filter. 

In this study, b  is assumed to be known. ˆ
tJ  and b̂  

are computed by RLS estimation. The next section 

describes calculation of nominal swing inertia.

3.1 Kalman filter

A linear Kalman filter (LKF) was used for estimating 

the swing velocity and acceleration. A double integrator 

model was employed. The swing velocity was assumed 

to be measurable using a sensor. The discrete-time 

linear state space system used in the study is as 

follows.

1 1 1 1k k k k k

k k k k

x F x G w
y H x v

    

                 (1)

where , ,

T

k sw k sw kx     
   and  1 2

T
kw w w

F  and H  are written as follows.

 1
, 1 0

0 1

T
F H 
  
                (2)

where the process and measurement noise covariance 

terms are considered to be uncorrelated zero mean 

white Gaussian with covariance matrices Qk and Rk, 

respectively.

(0, )k kw N Q                      (3)

(0, )k kv N R                      (4)

[ ] 0T
k kE w v                        (5)

where [0, ]kQ diag q . Here, q  must be determined as 

a parameter to be adjusted because the actual 

accelerated motion is not characterized suitably by a 

stationary random process. It is assumed that 0x̂
 is 

known with uncertainty given by 0P . In order to 

estimate x , the LKF was applied. The LKF is 

implemented in two steps: (1) prediction and (2) update. 

In the first step, the a priori estimates of the state and 

error covariance are given by

| 1 1 1ˆ ˆk k k kx F x                         (6)

| 1 1 1 1 1
T

k k k k k kP F P F Q                    (7)

In the second step, the a priori values are updated 

using the computed K, yielding the following a 
posteriori estimates.

| 1 | 1( )T T
k k k k k k k k kK P H H P H R               (8)

| 1 | 1ˆ ˆ ˆ( )k k k k k k k kx x K y H x                  (9)

| 1( )k k k k kP I K H P                       (10)

The next section describes the swing inertia 

estimation method based on the state estimated by the 

LKF.

3.2 Excavator swing dynamics

The estimation approach applied in this study is a 

model-based approach that employs excavator swing 

dynamics. It can be presented using the following 

equation.

t sw sw f swJ b T T                     (11)

Eq. (11) can be rearranged such that the terms for 

inertia, damping, and torque are separated into

0 t sw sw fJ b T                      (12)

where Tt is equal to -Tf + Tsw. Eq. (12) can be 

rewritten in the following linear parametric form.

   1 2 3 1 2 3, ,
T TT

ry                  (13)

where 1 , 2 , and 3  are the unknown parameters to 

be estimated.

   1 2 3 t tJ b T                (14)

and 1 , 2 , and 3  are computed based on the 

estimated swing velocity and acceleration

 1 2 3 1sw sw         
            (15)

The parameters 1 , 2 , and 3  are generally vary 

with time. 1  depends on the working posture of the 

excavator. 2  and 3  depend on the condition of the 

hydraulic system for the swing motion. In order to 

estimate the time-varying parameters, recursive least 
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square estimation with multiple forgetting factors was 

adopted in this study. Section 3.3 describes RLS 

estimation with forgetting.

3.3 Recursive least square estimation with 

forgetting

The scheme of RLS estimation with forgetting was 

adopted to estimate ( 1, 2,3)i i  . These factors assign 

less weight to older data and more weight to recent 

data6). In order to separate the error of each parameter 

(i.e., error for ( 1, 2,3)i i 
 by applying suitable 

forgetting factors, the decoupled cost function is defined 

as follows.

1 2 3

2
1 1 1 2 2 3 3

1

2
2 1 1 2 2 3 3

1

2
3 1 1 2 2 3 3

1

ˆ ˆ ˆ( ( ), ( ), ( ), )

1 ˆ( ( ) ( ) ( ) ( ) ( ) ( ) ( ))
2

1 ˆ( ( ) ( ) ( ) ( ) ( ) ( ) ( ))
2

1 ˆ( ( ) ( ) ( ) ( ) ( ) ( ) ( ))
2

k
k i

r
i
k

k i
r

i
k

k i
r

i

J k k k k

y i i k i i i i

y i i i i k i i

y i i i i i i k

  

      

      

      















   

   

  





    (16)

Using this defined cost function, each term on the 

right-hand side of the defined cost function represents 

the error of step k. The optimal estimates that minimize 

the cost function in Eq. (16) can be computed as 

follows.

1 2 3

1 1 1 1 2 2 3 3

1

2 2 1 1 2 2 3 3

1

3 3 1 1 2 2

0, 0, 0
ˆ ˆ ˆ( ) ( ) ( )

ˆ( ( ))( ( ) ( ) ( ) ( ) ( ) ( ) ( )) 0

ˆ( ( ))( ( ) ( ) ( ) ( ) ( ) ( ) ( )) 0

ˆ( ( ))( ( ) ( ) ( ) ( ) ( )

k
k i

r
i
k

k i
r

i

k i
r

J J J
k k k

i y i i k i i i i

i y i i i i k i i

i y i i i i i

  
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       

     




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



  
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



3 3

1

ˆ( ) ( )) 0
k

i

i k 


 (17)

1̂( )k , 2̂ ( )k , and 3̂ ( )k can be determined by 

rearranging Eq. (17) as follows.

1

2
1 1 1 1 2 2 3 3

1 1

1

2
2 2 2 2 1 1 3 3

1 1

1

2
3 3 3 3
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
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   
     
   
   

 
 
 
 

 

 

 1 1 2 2

1

( ) ( ) ( ) ( ) ( ))
k

r
i

i i i i i   


 
  
 
 
 (18)

However, a recursive form is required for real-time 

parameter estimation. The recursive form can be 

deduced by using the analogy between Eqs. (17) and 

(18) as follows.

1 1 1 1 1 2 2 3 3

2 2 2 1 1 2 2 3 3

3 3 3 1 1 2 2 3 3

ˆ ˆ ˆ( ) ( 1) ( ( ) ( ) ( 1) ( ) ( ) ( ) ( ))

ˆ ˆ ˆ( ) ( 1) ( ( ) ( ) ( ) ( ) ( 1) ( ) ( ))

ˆ ˆ ˆ( ) ( 1) ( ( ) ( ) ( ) ( ) ( ) ( ) ( 1))

r

r

r

k k L y k k k k k k k

k k L y k k k k k k k

k k L y k k k k k k k

       

       

       

      

      

       (19)

where

1
1 ,1 1 1 1 ,1 1

,1 1 1 ,1
1

( ) ( 1) ( )( ( ) ( 1) ( ))

1
( ) ( ( ) ( )) ( 1)

T
r r

T
r r

L k P k k k P k k

P k I L k k P k

   




   

         (20)

1
2 ,2 2 2 2 ,2 2

,2 2 2 ,2
2

( ) ( 1) ( )( ( ) ( 1) ( ))

1
( ) ( ( ) ( )) ( 1)

T
r r

T
r r
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   




   
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1
3 ,3 3 3 3 ,3 3

,3 3 3 ,3
3

( ) ( 1) ( )( ( ) ( 1) ( ))

1
( ) ( ( ) ( )) ( 1)

T
r r

T
r r

L k P k k k P k k

P k I L k k P k

   



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        (22)

The unknown parameters 1( )k , 2 ( )k , and 3( )k in 

the aforementioned equations can be replaced with their 

estimates, 1̂( )k , 2̂ ( )k , and 3̂ ( )k  because in this 

study, it is assumed that the actual and estimated values 

are very close to each other or are within the region of 

convergence. By substituting for 1( )k , 2 ( )k , and 

3( )k , the following equations can be obtained.

1 1 2 2 1 3 3

1 1 1 1

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ( 1) ( )( ( ) ( ) ( 1))r

k L k k k L k k k

k L k y k k k

    

  

 

              (23)

2 1 1 2 2 3 3

2 2 2 2
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ˆ ˆ( 1) ( )( ( ) ( ) ( 1))r
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k L k y k k k

    
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 

              (24)

3 1 1 3 2 2 3
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              (25)

The solutions for the estimates such as 1̂( )k , 2̂ ( )k , 

and 3̂ ( )k  can be obtained as shown in Eq. (26).

1
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3 1 3 23
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It can be proved that the determinant of the matrix 

in the following equation is always nonzero as 1P , 2P , 

and 3P  are always positive7).

1 2 1 3

2 1 2 3

3 1 3 2

1 ( ) ( ) ( ) ( )

( ) ( ) 1 ( ) ( )

( ) ( ) ( ) ( ) 1

L k k L k k
L k k L k k
L k k L k k

 
 
 

 
 
 
           (27)

Therefore, the inverse of Eq. (27) always exists. 

Section 3.4 describes the nominal-parameter-based 

updating rule.

3.4 Updating rule: nominal parameter

Using the value of the damping coefficient in Eq. 

(11), which is obtained from a previous study8), the 

updating rule has been defined such that the estimated 

damping coefficient is updated depending on the given 

damping coefficient. The updating rule was defined by 

modifying Eq. (19). Fig. 5 describes the defined 

updating rule for the nominal parameter.

Fig. 5 Updating rule for the nominal parameter

  in Fig. 5 is the difference between the actual and 

estimated values. The estimation error is defined as 

follows.

2 2 1
ˆˆe b b                       (28)

Then, the estimated value in the recursive form is 

updated by applying the following updating rule.

2

2 2 2 1 1 2 2 3 3

2 2 1 1 2 2 3 3

ˆ ˆ ˆ( ) ( 1) ( ( ) ( ) ( ) ( ) ( 1) ( ) ( ))

ˆ ˆ( ) ( ( ) ( ) ( ) ( ) ( 1) ( ) ( ))

r

r

If e

k k L y k k k k k k k
else

k b L y k k k k k k k
end



       

      



      

      (29)

The updating rule can enhance the convergence 

performance of estimation because the ˆ
tJ  and t̂T  can 

approach the actual values when the estimated damping 

coefficient is updated when the absolute value of the 

estimation error is larger than the defined error 

threshold. As the actual damping coefficient cannot be 

determined owing to its nonlinearity,   must be 

determined as a parameter to be adjusted. The next 

section describes the updating rule for the forgetting 

factor.

3.5 Updating rule: forgetting factor

Forgetting factors ( 1 , 2 ) defined in the previous 

section for the RLS algorithm are designed to be 

updated. The estimator does not perform well when the 

swing acceleration changes significantly because of the 

convergence delay in the LKF used for estimating the 

swing acceleration. Therefore, it is necessary to 

maintain the value of the rotational inertia until the 

swing acceleration converges to an actual value upon 

updating the defined forgetting factor close to unity. 

The estimator is designed such that the defined 

forgetting factor close to zero is updated for 3̂  to 

improve the estimation performance of tT . Fig. 6 shows 

the designed updating rule for the forgetting factor.

Fig. 6 Updating rule for the forgetting factor

An update value of 0.99 was chosen for the 

forgetting factor to effectively track the slowly varying 

parameter, 1( )k . 0.1 was the value chosen for the 

rapidly changing parameter, 3( )k . The convergence 

delay was derived by comparing the estimated 

acceleration with the actual acceleration offline. The 

convergence delay was defined as 0.25 s in the study. 

The designed updating rule was used to secure the 

estimation performance for rotational inertia when the 

excavator begins to decelerate for unloading. Section 4 
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describes the performance evaluation of the proposed 

estimation algorithm based on RLS with updating rules 

and multiple forgetting.

4. Performance Evaluation

In order to evaluate the estimation performance of the 

proposed algorithm, Matlab/Simulink-based simulations 

were conducted. The swing dynamic model for 

estimation was constructed in Matlab/Simulink environment. 

The values of b  and fT  used in the swing dynamic 

model were obtained from a previous study8). The 

rotational inertia of the excavator varying with the working 

posture was derived analytically (mathematically) in a 

typical working scenario, and was used as a reference 

value tracked by the proposed estimation algorithm.

4.1 Working scenario and analytical rotational 

inertia

In this study, the working scenario (dumping) was 

divided into three stages: loading, transporting, and 

unloading. Figure 7 describes the divided working 

scenario.

Fig. 7 Three stages of the working scenario

(a) Working angles: boom, arm, and bucket

(b) Working angles and velocity: swing

Fig. 8 Working angles and velocity: boom, arm, 

bucket, and swing

The working part angles (boom, arm, bucket, and 

swing) and velocity (swing) for the working scenario 

are shown in Fig. 8.

Based on the typical working scenario, the analytical 

rotational inertia of the excavator was derived. Fig. 9 

shows the derived analytical rotational inertia used for 

performance evaluation.

Fig. 9 Analytic rotational inertia for the working 

scenario

The maximum and minimum values of the derived 

analytical rotational inertia are 9,761 kgm2 and 4,380 

kgm2 during working.

4.2 Rotational inertia estimation

In order to conduct a reasonable performance 

evaluation, three simulation conditions with different 

material types were considered. Fig. 10 shows the three 

simulation conditions.

Fig. 10 Three simulation conditions
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Three simulations were conducted for rotational 

inertia estimation in the region where the swing motion 

existed because the proposed estimation algorithm 

requires the swing velocity and acceleration to estimate 

the rotational inertia of the excavator. Furthermore, the 

rotational inertia is not required when the excavator is 

in a stationary state because the rotational inertia is 

parameter related to swing dynamics. Therefore, the 

region between 5.5 s to 9.3 s in the working scenario 

(Fig. 6) was extracted and used in the simulation (total 

time was approximately 3.8 s). The swing acceleration 

changed dramatically after 7.5 s. Arbitrary noise with 

Gaussian distribution was applied to the velocity profile 

for reasonable performance evaluation, and the swing 

acceleration was estimated using the LKF. The following 

figures show the estimation results during rotation.

Case–1) Without any material

Fig. 11 Estimation results when no material was 

considered

S
ig
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l

S
ig
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l

Fig. 12 Update of the damping coefficient and 

forgetting factor when no material was 

considered

Fig. 13 Estimation error (rotational inertia) distribution 

when no material was considered

Case–2) With material (sand, 288 kg)
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2
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]

Fig. 14 Estimation results considering a material 

(sand, 288 kg)
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Fig. 15 Update of the damping coefficient and 

forgetting factor considering a material 

(sand, 288 kg)
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Fig. 16 Estimation error (rotational inertia) distribution 

considering a material (sand, 288 kg)

Case–3) With material (sandstone, 423 kg)

[k
gm
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]

[N
m

s/
ra

d]

[N
m

]

Fig. 17 Estimation results considering a material 

(sandstone, 423 kg)
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Fig. 18 Update of the damping coefficient and 

forgetting factor considering a material 

(sandstone, 423 kg)

Fig. 19 Estimation error (rotational inertia) distribution 

considering a material (sandstone, 423 kg)

The simulation results obtained without considering 

any material (rotational inertia did not change 

significantly) show that the rotational inertia of the 

excavator was well estimated during rotation. In 

addition, the rotational inertia was well estimated when 

the rotational inertia changed significantly because of 

the presence of materials (sand weighing 288 kg and 

sandstone weighing 423 kg) in cases 2 and 3. In the 

updated results (Fig. 12, Fig. 15, and Fig. 18), “1” 

indicates that the update was performed, and “0” 

indicates that the update was not performed. Based on 

the designed updating rules for the nominal parameter 

(damping coefficient) and forgetting factors, estimation 

performance was secured despite the estimation error 

due to the convergence delay of the LKF. However, 

online convergence delay estimation is necessary to 

apply the proposed algorithm to a variety of situations 

and systems. Analysis of the estimation error showed 

that the error has Gaussian distributions and that an 

average of the estimation error for the rotational inertia 

is almost zero. The standard deviation is less than 5%. 

Table 1 lists the average and standard deviation of the 

estimation error for the rotational inertia.

Table 1 Estimation error (rotational inertia) analysis: 

Average and standard deviation

Division
Descriptive statistics for estimation error

Average [%] Standard deviation 
[%]

Case 1 −1.7038 4.5112
Case 2 0.1314 4.9887
Case 3 −0.4894 3.9960
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5. Conclusion

The aim of this study was to estimate the rotational 

inertia of an excavator by using RLS with updating 

rules and multiple forgetting and to evaluate the 

performance of the estimation algorithm. For this 

purpose, a recursive least square algorithm was 

developed, and appropriate multiple forgetting factors 

were defined to estimate the time-varying parameters, 

such as rotational inertia, which varies with the working 

posture. The updating rule for the forgetting factor 

considering the convergence delay of the LKF was 

applied for improving the estimation performance. The 

proposed estimation algorithm only requires information 

on swing velocity and damping coefficient for practical 

implementation to an actual system. The reference 

rotational inertia in a typical working scenario was 

derived analytically for verifying the performance of the 

developed estimation algorithms. Estimation performance 

was evaluated through simulations in MATLAB/ 

Simulink environment with various material conditions 

(without any material, with sand (288 kg), and with 

sandstone (423 kg). The simulation results show that 

the proposed estimation algorithm had high estimation 

performance with the designed updating rules. Based on 

the analysis of the estimation error with Gaussian 

distribution, the average of the estimation error was 

almost zero, and the standard deviation was less than 

5%. However, the convergence delay used in the 

updating rule for the forgetting factor should be derived 

by online analysis to secure robust estimation 

performance for practical applications. In addition, the 

designed estimation algorithm cannot estimate the 

rotational inertia when the excavator is in a stationary 

state because the required information such as the swing 

velocity is zero. Therefore, application of online 

estimation of the convergence delay for swing 

acceleration and development of an estimation algorithm 

when the excavator is in a stationary state are being 

considered for future work. The proposed RLS-based 

algorithm for rotational inertia estimation can be applied 

to various mechanical systems, including excavators, for 

safety and automation. It is also expected that the 

proposed estimation algorithm and evaluation technique 

can be employed in the design stage.
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