• Title/Summary/Keyword: Excavation shape

Search Result 166, Processing Time 0.025 seconds

Site Application of Artificial Neural Network for Tunnel Construction (인공신경망을 이용한 터널시공에서 현장 적용성)

  • Song, Joohyeon;Chae, Hwiyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.25-33
    • /
    • 2012
  • Although it is important to reflect the accurate information of the ground condition in the tunnel design, the analysis and design are conducted by limited information because it is very difficult to consider various geographies and geotechnical conditions. When the tunnel is under construction, examination of accurate safety and prediction of behavior are overcome the limits of predicting behavior by Artificial Neural Network in this study. First, construct the suitable structure after the data of field was made sure by the multi-layer back propagation, then apply with algorithm. Employ the result of measured data from database, and consider the influence factor of tunnel, like supporting pattern, RMR, Q, the types of rock, excavation length, excavation shape, excavation over, to carry out the reliable analysis through field applicability of Artificial Neural Network. After studying, using the ANN model to predict the shearing displacement, convergence displacement, underground displacement, Rock bolt output follow the excavation over of tunnel construction field, then determine the field applicability with ANN through field measured value and comparison analysis when tunnel is being constructed.

Application of GPR to Prospect Archaeological Remains (유적발굴에 있어서 GPR탐사의 응용에 관한 연구)

  • 김소구;오현덕
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.475-490
    • /
    • 2003
  • The purpose of this study is to apply one of the geophysical methods, GPR to archaeology. Time slice of analysis method was used to interpret archaeological feature before excavation. Study areas are Pubcheonri burial mound group in Wonju, Songhakdong no. 1 tomb, Gosung in Kyungsangnamdo, and Yoshinogari 2 rows of jar-coffins burial in Saga Prefecture, Japan. We found a stone tomb, spreaded and piled stones from spoiled tombs of the Baekje Dynasty as archaeological features in Pubchonri, Wonju. Songhakdong no. 1 tomb in Gosung was the unique keyhole-shaped tomb in Kyungsangnamdo as we know. But we found that the tomb consists of 3 tombs and there are lots of stone tombs according to the GPR and excavation. From the GPR exploration and excavation, it turned out not be a keyhole-shape tomb. We also found jar-coffins burial in Yoshinogari, Japan. As a result GPR was very helpful to detect archaeological features and pattern before excavation in advance.

Suggestion of a Modified RMR based on Effect of RMR Parameters on Tunnel Displacement in Sedimentary Rocks (퇴적암 기반 터널에서의 지질인자별 변위 영향도를 고려한 RMR 수정 제안)

  • Seo, Yong-Seok;Yim, Sung-Bin;Na, Jong-Hwa;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.197-205
    • /
    • 2008
  • Total displacement under non-reinforcement is a quantitative index of rock mass behavior during tunnel excavation and depends widely upon geological characteristics. The primary purpose of this study is to suggest a rock mass evaluation method, well representing tunnel behavior during excavation, according to rock type. A 3-D numerical analysis was carried out, with consideration of the shape of tunnel section, excavation condition and so forth, in a sedimentary rock-based tunnel, and total displacements under non-reinforcement according to rock mass class were calculated. Finally, quantification analysis was carried out to assess correlation of the total displacement with RMR parameters. As the result, a modified RMR system fer quantification of rock mass behavior during tunnel excavation is suggested.

Off-Site Distortion and Color Compensation of Underwater Archaeological Images Photographed in the Very Turbid Yellow Sea

  • Jung, Young-Hwa;Kim, Gyuho;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.14-32
    • /
    • 2022
  • Underwater photographing and image recording are essential for pre-excavation survey and during excavation in underwater archaeology. Unlike photographing on land, all underwater images suffer various quality degradations such as shape distortions, color shift, blur, low contrast, high noise levels and so on. Outcome is very often heavily photographing equipment and photographer dependent. Excavation schedule, weather conditions, and water conditions can put burdens on divers. Usable images are very limited compared to the efforts. In underwater archaeological study in very turbid water such as in the Yellow Sea (between mainland China and the Korean peninsula), underwater photographing is very challenging. In this study, off-site image distortion and color compensation techniques using an image processing/analysis software is investigated as an alternative image quality enhancement method. As sample images, photographs taken during the excavation of 800-year-old Taean Mado Shipwrecks in the Yellow Sea in 2008-2010 were mainly used. Significant enhancement in distortion and color compensation of archived images were obtained by simple post image processing using image processing/analysis software (PicMan) customized for given view ports, lenses and cameras with and without optical axis offsets. Post image processing is found to be very effective in distortion and color compensation of both recent and archived images from various photographing equipment models and configurations. Merits and demerit of in-situ, distortion and color compensated photographing with sophisticated equipment and conventional photographing equipment, which requires post image processing, are compared.

Deformation Analysis of Excavated Behind Ground by The Artificial Displacement Method (II) - Numerical Analysis and Application - (강제변위법을 이용한 굴착배면지반의 변형해석(II) - 수치해석 및 적용성 -)

  • Yun, Jung-Mann
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.31-40
    • /
    • 2008
  • The deformation behavior of the excavated behind ground due to the displacement shape of retention walls is predicted by numerical analysis, which can be performed using the artificial displacement method with elasto-plastic constitutive model. The displacement shape of the behind ground around the retention wall is similar to the displacement shape of the retention wall. However, far from the retention wall, it changes to the displacement shape of cantilever. The deformation (the settlement, the lateral movement) of the excavated behind ground can be decreased by restraining the upper displacement of the retention wall. The displacement shape of the retention wall due to excavation affects on the plastic failure zone and decreasing zone of stability of the excavated behind ground.

  • PDF

The Case Study of Design on Steel Pipe Sheet Pile for Earth Retaining Wall on Deep Excavation (대심도 지반굴착을 위한 벽강관말뚝 흙막이공법의 설계 사례 연구)

  • Byung-Il Kim;Jong-Ku Lee;Kyoung-Tae Kim;Kang-Han Hong;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 2023
  • In this study, the results of the elasto-plastic beam analysis, finite element analysis and optimization design of the steel pipe sheet pile applied as an earth retaining wall under the deep excavation were presented. Through this study, it was found that the high-strength and sea resistant steel pipe has high allowable stress, excellent structural properties, favorable corrosion, and high utilization as an earth retaining wall, and the C-Y type joint has significantly improved the tensile strength and stiffness compared to the traditional P-P type. In addition, it was investigated that even if the leak or defect of the wall occurs during construction, it has the advantage of being able to be repaired reliably through welding and overlapping. In the case of steel pipe wall, they were evaluated as the best in views of the deep excavation due to the large allowable bending stress and deformation flexibility for the same horizontal displacement than CIP or slurry wall. Elasto-plastic and finite element analysis were conducted in consideration of ground excavation under large-scale earth pressure (uneven pressure), and the results were compared with each other. Quantitative maximum value were found to be similar between the two methods for each item, such as excavation behavior, wall displacement, or member force, and both analysis method were found to be applicable in design for steel pipe sheet pile wall. Finally, it was found that economical design was possible when determining the thinnest filling method with concrete rather than the thickest hollow shape in the same diameter, and the depth (the embedded length through normality evaluation) without rapidly change in displacement and member force.

Design on the large section of station tunnel under shallow overburden (저토피고 대단면 정거장터널의 설계)

  • Jeong, Yun-Young;Choi, Hae-Joon;Kim, Byung-Ju;Yu, Bong-Won;Kim, Yong-Il;Oh, Sung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.171-182
    • /
    • 2007
  • For minimizing the effect on the focus of civil traffic and environment conditions related to the excavation at the traffic jamming points, an underground station tunnel was planned with 35.5 m in length and bigger area than $200\;m^2$ in sedimentary rock mass. It faced the case that the overburden was just under 13 m. Not based on a pattern design but on the case histories of similar projects and arching effect, the design of large section tunnel under shallow overburden was investigated on three design subjects which are shape effect on the section area, application method of support pressure, and supporting and tunnel safety. According to the mechanical effect from section shape, a basic design and a preliminary design was obtained, and then supporting method of large section was planned by the supporting of NATM and a pipe roof method for subsidence prevention and mechanical stability. From the comparative study between both designs, it was found that the basic design was suitable and acceptable for the steel alignment of tunnel lining, safety and the design parameter restricted by the limit considered as partition of the excavation facilities. Through the analysis result of preliminary design showing the mechanical stability without stress concentration in tunnel arch level, it also was induced that shape effect of the large section area and yielding load obtained from deformation zone in the surrounding rock mass of tunnel have to be considered as major topics for the further development of design technique on the large section tunnel.

  • PDF

A Study on Waterjet Fracture Mechanism for Granitic Rocks (화강암에 대한 워터젯 파쇄 메커니즘에 관한 연구)

  • Oh, Tae-Min;Cho, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.643-648
    • /
    • 2010
  • Waterjet is a very useful technology for rock excavation because of low level noise and vibration during breaking rocks. To accurately predict the volume and shape excavated by the waterjet, it is important to understand waterjet fracture mechanisms. There have been various theoretical assumptions and approaches in the literature. In this study, waterjet mechanisms are classified into three standards: a mechanism scale, theoretical assumption for a target material, and jet phase. In addition, through a waterjet experimental study for weathered and intact granitic rocks, a fracture shape is observed and analyzed on comparison with the previous mechanisms. As a result, best waterjet mechanisms are selected to explain the fracture pattern of the granitic rocks.

  • PDF

A Study on the Behavior of Partially Extended Grouted Soil-Nailing (부분적으로 확장된 그라우트 구근을 갖는 쏘일네일링 공법의 거동에 관한 연구)

  • Lee, In;Choi, Seung-Hwan;Kim, Ju-Hyun;Park, Jun-Beom;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1068-1075
    • /
    • 2009
  • The Soil-nailing installed to the slope or the vertical excavation surface shows reinforce effect using frictional resistance between ground and grout. This friction is showed the more the shape of grout is rough, the more efficient.. This study is about the characteristic behavior of Soil-nailing has partial extension grout made artificially control. In this study, we refer to the new boring machine that can make partially extended grout and perform 3D analysis between of the partial extended grout and the general grout of a cylinder shape using the finite element method for comparing.

  • PDF

The Selection and Abrasion Assessment of Cutter on Shield Tunnelling in Weathered Soil - Seoul Subway Line 7 Extension, Construction Lot 703 (풍화암 지반에서의 쉴드 TBM 커터도구 선정 및 마모량 평가 - 서울지하철 7호선연장 703공구 중심으로)

  • Kim, Yong-Il;Lee, Sang-Han;Jeong, Du-Seok;Im, Jong-Yun;Park, Gwang-Jun;Park, Jun-Su
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2006.09a
    • /
    • pp.59-79
    • /
    • 2006
  • The successful execution of shield tunnelling depends on the cutting ability of cutter. So the selection of shape, size and material of cutter according to geology condition is important work. Since shield tunnelling method was first invented in 1881, the cutting tool for rock has been developed owing to various experiments and researches, the study for soil, however, is insufficient. This paper introduces the shield tunnelling that will be carried out on weathered rock section (920m) of Seoul Subway Line 7 Extension C703. The shape and the material of cutter are discussed required for execution without replacement of cutter tool as well as for advance of excavation efficiency. In addition the estimation method of cutter abrasion in case of excavation on weathered soil is proposed and verified. Specially, the coefficient of abrasion for different soil and cutter is proposed by means of investigation into construction example of foreign country.

  • PDF