• Title/Summary/Keyword: Example-Based Deformation

Search Result 83, Processing Time 0.026 seconds

Equivalence Principles Based Skin Deformation of Character Animation

  • You, L.H.;Chaudhry, E.;You, X.Y.;Zhang, Jian J.
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • Based on the equivalence principles of physical properties, geometric properties and externally applied forces between a surface and the corresponding curves, we present a fast physics and example based skin deformation method for character animation in this paper. The main idea is to represent the skin surface and its deformations with a group of curves whose computation incurs much less computing overheads than the direct surface-based approach. The geometric and physical properties together with externally applied forces of the curves are determined from those of the surface defined by these curves according to the equivalence principles between the surface and the curves. This ensures the curve-based approach is equivalent to the original problem. A fourth order ordinary differential equation is introduced to describe the deformations of the curves between two example skin shapes which relates geometric and physical properties and externally applied forces to shape changes of the curves. The skin deformation is determined from these deformed curves. Several examples are given in this paper to demonstrate the application of the method.

Study on Plastic Deformation of Interior Support at the Continuous I-Beam Bridge (I-Beam연속교 내측지점의 소성변형에 관한 연구)

  • Chung, Kyung-Hee;Kim, Jin-Sung;Yang, Seung-Ie
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.146-152
    • /
    • 2002
  • The steel shows plastic deformation after the yield point exceeds. Because of overloads, the plastic deformation occurs at the interior support of a continuous bridge. The plastic deformation is concentrated at the interior support, and the permanence deformation at the interior support remains after loads pass. Because local yielding causes the positive moment at the interior support, it is called "auto moment". Auto moment redistributes the elastic moment. Because of redistribution, auto moment decreases the negative moment at the interior support of a continuous bridge. In this paper, the moment-rotation curve from Schalling is used. The Plastic rotation is computed by using Beam-line method, and auto moment is calculated based on the experiment curve. The design example is presented using limit state criterion.

Finite element models of reinforced ECC beams subjected to various cyclic deformation

  • Frank, Timothy E.;Lepech, Michael D.;Billington, Sarah L.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.305-317
    • /
    • 2018
  • Steel reinforced Engineered Cementitious Composite (ECC) components have been proposed for seismic structural applications, for example in coupling beams, infill panels, joints, columns, and flexural members. The development of strain in the steel reinforcement of cementitious components has been shown to vary based on both the steel reinforcement ratio and the applied deformation history. Strain in the steel reinforcement of reinforced ECC components is an important structural response metric because ultimate failure is often by fracture of the steel reinforcement. A recently proposed bond-slip model has been successfully calibrated to cyclically tested reinforced ECC beams wherein the deformation history contained monotonically increasing cycles. This paper reports simulations of two-dimensional finite element models of reinforced ECC beams to determine the appropriateness and significance of altering a phenomenological bond-slip model based on the applied deformation history. The numerical simulations with various values of post-peak bond-slip softening stiffness are compared to experimental results. Varying the post-peak bond-slip softening stiffness had little effect on the cracking patterns and hysteretic response of the reinforced ECC flexural models tested, which consisted of two different steel reinforcement ratios subjected to two different deformation histories. Varying the post-peak bond-slip softening stiffness did, however, affect the magnitude of strain and the length of reinforcing bar that strain-hardened. Overall, a numerical model with a constant bond-slip model represented well various responses in reinforced ECC beams with multiple steel reinforcement ratios subjected to different deformation histories.

Deformation and Hybridization of the Romantic Style in Modern Fashion (현대패션에 나타난 낭만주의 양식의 변형과 혼성)

  • Kim, Jeong-Mee;Kim, Min-Ja
    • Journal of the Korean Society of Costume
    • /
    • v.60 no.7
    • /
    • pp.47-60
    • /
    • 2010
  • The goal of this dissertation is to analyze various Romantic styles appearing in modern fashion based upon the 'Difference' theory developed by Gilles Deleuze. A new framework for analyzing the changes of dress style based upon the 'Difference' theory derived from Deleuze's theory and from his interpretations of paintings was developed. The characteristics that represent 'difference' in change of dress style are deformation and hybridization. They are derived from the Deleuze's interpretations of 'difference' represented in the paintings by Bacon. The aesthetic values of the Romantic style in the 19th century dress are subordination, sensuality, and maternity. And the formative characteristics of the Romantic style dress are suppression of body, fixed form, volume, and ornamentation. The formative characteristics of the Romantic style that have appeared since 1980s is analyzed according to deformation and hybridization and the results are as follows: first, deformation caused by exaggeration or emphasis in the modern Romantic fashion creates changeability of the form, destruction of the 19th century style, volume, and ornamentation. Second, hybridization by combining heterogeneous characteristic between times and genders (for example, the 19th century and modern times or masculinity and femininity) frees body from the dress and changes the dress silhouettes and ornamentation. Thus totally new and different Romantic style is created. The Romantic style in modern fashion changed into the appropriate style to the modern society under various conditions such as designer's will, postmodernism, changes of femininity and technology. It can be said that this is an example of the Deleuze's 'becoming' theory.

Finite element analysis of welding process in consideration of transformation plasticity in welding (용접에서 발생하는 변태소성을 고려한 용접공정의 유한요소 해석)

  • 임세영
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.210-212
    • /
    • 2003
  • Finite element analysis of welding processes, which entail phase evolution, heat transfer and deformation, is considered in this paper. Attention focuses on numerical implementation of the thermo-elastic-plastic constitutive equation proposed by Leblond et al in consideration of the transformation plasticity. Based upon the multiplicative decomposition of deformation gradient, hyperelastic formulation is employed for efficient numerical integration, and the algorithmic consistent moduli for elastic-plastic deformations including transformation plasticity are obtained in the closed form. The convergence behavior of the present implementation is demonstrated via a couple of numerical example.

  • PDF

Residual Stress Estimation and Deformation Analysis for Injection Molded Plastic Parts using Three-Dimensional Solid Elements (3 차원 입체요소를 사용한 사출성형품의 잔류응력 예측 및 후변형 해석)

  • Park, Keun;Ahn, Jong-Ho;Yim, Chung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.507-514
    • /
    • 2003
  • Most of CAE analyses for injection molding have been based on the Mele Shaw's approximation: two-dimensional flow analysis. in some cases, that approximation causes significant errors due to loss of the geometrical information as well as simplification of the flow characteristics in the thickness direction. Although injection molding analysis software using three-dimensional solid elements has been developed recently, such as Moldflow Flow3D, it does not contain a deformation analysis function yet. The present work covers three-dimensional deformation analysis or injection molded plastic parts using solid elements. A numerical scheme for deformation analysis has bun proposed from the results of injection molding analysis using Moldflow Flow3D. The accuracy of the proposed approach has been verified through a numerical analysis of rectangular plates with various thicknesses in comparison with the classical shell-based approach. In addition, the reliability of the approach has also been proved through an industrial example. an optical plastic lens, in comparison of real experiments.

Primitive-Based Elastic Deformation (프리미티브 기반 탄성체 시뮬레이션)

  • Hong, Eun-Ki;Kim, Jong-Hyun;Lee, Jung;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • We propose a novel framework for controlling various and complex models using primitive model. To control original model, first we correspond original model to simplified primitive model that contains original model. After doing deformable simulation with primitive model, we compute original model by inversion of result. Since existing method can only control one type formed models, our method - which can control all difference formed models by only one primitive model - has contribution. In conclusion, we show results that efficiently and intuitionally control the various deformable models by using one example primitive model.

The Data Processing Method for Small Samples and Multi-variates Series in GPS Deformation Monitoring

  • Guo-Lin, Liu;Wen-Hua, Zheng;Xin-Zhou, Wang;Lian-Peng, Zhang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.185-189
    • /
    • 2006
  • Time series analysis is a frequently effective method of constructing model and prediction in data processing of deformation monitoring. The monitoring data sample must to be as more as possible and time intervals are equal roughly so as to construct time series model accurately and achieve reliable prediction. But in the project practice of GPS deformation monitoring, the monitoring data sample can't be obtained too much and time intervals are not equal because of being restricted by all kinds of factors, and it contains many variates in the deformation model moreover. It is very important to study the data processing method for small samples and multi-variates time series in GPS deformation monitoring. A new method of establishing small samples and multi-variates deformation model and prediction model are put forward so as to resolve contradiction of small samples and multi-variates encountered in constructing deformation model and improve formerly data processing method of deformation monitoring. Based on the system theory, a deformation body is regarded as a whole organism; a time-dependence linear system model and a time-dependence bilinear system model are established. The dynamic parameters estimation is derived by means of prediction fit and least information distribution criteria. The final example demonstrates the validity and practice of this method.

  • PDF

A new approach for finite element analysis of delaminated composite beam, allowing for fast and simple change of geometric characteristics of the delaminated area

  • Perel, Victor Y.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.501-518
    • /
    • 2007
  • In this work, a new approach is developed for dynamic analysis of a composite beam with an interply crack, based on finite element solution of partial differential equations with the use of the COMSOL Multiphysics package, allowing for fast and simple change of geometric characteristics of the delaminated area. The use of COMSOL Multiphysics package facilitates automatic mesh generation, which is needed if the problem has to be solved many times with different crack lengths. In the model, a physically impossible interpenetration of the crack faces is prevented by imposing a special constraint, leading to taking account of a force of contact interaction of the crack faces and to nonlinearity of the formulated boundary value problem. The model is based on the first order shear deformation theory, i.e., the longitudinal displacement is assumed to vary linearly through the beam's thickness. The shear deformation and rotary inertia terms are included into the formulation, to achieve better accuracy. Nonlinear partial differential equations of motion with boundary conditions are developed and written in the format acceptable by the COMSOL Multiphysics package. An example problem of a clamped-free beam with a piezoelectric actuator is considered, and its finite element solution is obtained. A noticeable difference of forced vibrations of the delaminated and undelaminated beams due to the contact interaction of the crack's faces is predicted by the developed model.

Deformation and failure mechanism exploration of surrounding rock in huge underground cavern

  • Tian, Zhenhua;Liu, Jian;Wang, Xiaogang;Liu, Lipeng;Lv, Xiaobo;Zhang, Xiaotong
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.275-291
    • /
    • 2019
  • In a super-large underground with "large span and high side wall", it is buried in mountains with uneven lithology, complicated geostress field and developed geological structure. These surrounding rocks are more susceptible to stability issues during the construction period. This paper takes the left bank of Baihetan hydropower station (span is 34m) as a case study example, wherein the deformation mechanism of surrounding rock appears prominent. Through analysis of geological, geophysical, construction and monitoring data, the deformation characteristics and factors are concluded. The failure mechanism, spatial distribution characteristics, and evolution mechanism are also discussed, where rock mechanics theory, $FLAC^{3D}$ numerical simulation, rock creep theory, and the theory of center point are combined. In general, huge underground cavern stability issues has arisen with respect to huge-scale and adverse geological conditions since settling these issues will have milestone significance based on the evolutionary pattern of the surrounding rock and the correlation analyses, the rational structure of the factors, and the method of nonlinear regression modeling with regard to the construction and development of hydropower engineering projects among the worldwide.