• Title/Summary/Keyword: Exact solution

Search Result 865, Processing Time 0.025 seconds

Transient thermal stresses of orthotropic functionally graded thick strip due to nonuniform heat supply

  • Ootao, Yoshihiro;Tanigawa, Yoshinobu
    • Structural Engineering and Mechanics
    • /
    • v.20 no.5
    • /
    • pp.559-573
    • /
    • 2005
  • This paper is concerned with the theoretical treatment of transient thermal stresses involving an orthotropic functionally graded thick strip due to nonuniform heat supply in the width direction. The thermal and thermoelastic constants of the strip are assumed to possess orthotropy and vary exponentially in the thickness direction. The transient two-dimensional temperature is analyzed by the methods of Laplace and finite sine transformations. We obtain the exact solution for the simply supported strip under the state of plane strain. Some numerical results for the temperature change, the displacement and the stress distributions are shown in figures. Furthermore, the influence of the orthotropy and nonhomogeneity of the material is investigated.

The effect of Fe2O3 nanoparticles instead cement on the stability of fluid-conveying concrete pipes based on exact solution

  • Nouri, Alireza Zamani
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • This paper deals with the stability analysis of concrete pipes mixed with nanoparticles conveying fluid. Instead of cement, the $Fe_2O_3$ nanoparticles are used in construction of the concrete pipe. The Navier-Stokes equations are used for obtaining the radial force of the fluid. Mori-Tanaka model is used for calculating the effective material properties of the concrete $pipe-Fe_2O_3$ nanoparticles considering the agglomeration of the nanoparticles. The first order shear deformation theory (FSDT) is used for mathematical modeling of the structure. The motion equations are derived based on energy method and Hamilton's principal. An exact solution is used for stability analysis of the structure. The effects of fluid, volume percent and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field and geometrical parameters of pipe are shown on the stability behaviour of system. Results show that considering the agglomeration of $Fe_2O_3$ nanoparticles, the critical fluid velocity of the concrete pipe is decreased.

Application of Probability Density Function in SFEM and Corresponding Limit Value (추계론적 유한요소해석에서의 확률밀도함수 사용과 수렴치)

  • Noh Hyuk-Chun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.857-864
    • /
    • 2006
  • Due to the difficulties in numerical generation of random fields that satisfy not only the probabilistic distribution but the spectral characteristics as well. it is relatively hard to find an exact response variability of a structural response with a specific random field which has its features in the spatial and spectral domains. In this study. focusing on the fact that the random field assumes a constant over the domain under consideration when the correlation distance tends to infinity, a semi-theoretical solution of response variability is proposed for in-plane and plate bending structures. In this procedure, the probability density function is used directly resulting in a semi-exact solution for the random field in the state of random variable. It is particularly noteworthy that the proposed methodology provides response variability for virtually any type of probability density functions.

  • PDF

Numerical study for vibration response of concrete beams reinforced by nanoparticles

  • Heidari, Ali;Keikha, Reza;Haghighi, Mohammad Salkhordeh;Hosseinabadi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.311-316
    • /
    • 2018
  • Vibration of concrete beams reinforced by agglomerated silicon dioxide ($SiO_2$) nanoparticles is studied based on numerical methods. The structure is simulated by Euler-Bernoulli beam model and the Mori-Tanaka model is used for obtaining the effective material properties of the structure. The concrete beam is located in soil medium which is modeled by spring elements. The motion equations are derived based on energy method and Hamilton's principle. Based on exact solution, the frequency of the structure is calculated. The effects of different parameters such as volume percent of $SiO_2$ nanoparticles and agglomeration, soil medium and geometrical parameters of beam are shown on the frequency of system. The results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency increases.

Steering Axis Analysis of Multi-link Suspensions with Bushing Compliance (컴플라이언스 특성을 고려한 멀티링크 현가장치의 조향축 해석)

  • Kim, Sang Sup;Kim, Seong Hun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.194-202
    • /
    • 2014
  • Steering axis of suspensions is an important factor that affects ride and handling quality in the vehicle chassis development. Macpherson strut and double wishbone's steering axis are defined geometrically, but multi-link suspensions can not be geometrically analyzed. In this case instant axis theory is commonly used to find a steering axis. Since the steering axis is moving with varying caster and kingpin inclination angle, this method approximately corresponds with exact solution. In this paper, we propose a velocity analysis method to find a pure rotational axis of the wheel relative to suspension arms, that is exact solution of the steering axis. This paper extends the method to analyze the steering axis of multi-link suspensions with bushing compliance. The analysis results applied to double wishbone and multi-link suspensions demonstrate validity and accuracy of the proposed method.

A Study of the Development of Algorithm for Optimal Route Design of the Vehicle Routing Problems (차량경로문제 (VRP)의 최적루트 설계를 위한 알고리듬 개발에 관한 연구)

  • 이규헌
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.1
    • /
    • pp.153-168
    • /
    • 1994
  • This paper is concerned with the development of tree-search algorithm for the exact solution to the vehicle problem (VRP), where set of vehicles of known capacity based at depot, have to be routed in order to supply customers with known requirements. When is required is to design routes, so that the total cost (i. e. total route length or time duration, ect.) is minimized. For obtianing the exact solution, the most important factors are the value of bound and branching strategy. Using the bound based on with bound ascent procedures from subgradient and state-space ascents, the incorporation of bounds into tree search algorithm to solve the problem is shown. Computational results of the corresponding algorithm show that VRPs with up to 40 customers can be solved optimally with this algorithm.

  • PDF

VALIDITY REGIONS OF THEORETICAL MODELS FOR ESTIMATING THE RCS OF LOSSY DIELECTRIC CYLINDERS

  • Hong, Jin-Young;Kwon, Soon-Gu;Oh, Yi-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.369-373
    • /
    • 2007
  • This paper presents an examination of theoretical scattering models for radar cross sections (RCS) of lossy dielectric cylinders, such as exact analytical solution, low frequency approximation (Rayleigh) and high frequency approximation (Physical Optics). The validity regions of the PO and Rayleigh models are closely examined with exact solution in terms of various wavelengths and dielectric constants of a circular cylinder. And also this paper examines the PO and Rayleigh models for back and forward scatter RCS of a cylinder at various incidence angles and polarizations. It was found that the PO and Rayleigh model have their validity regions for estimating the RCS of a circular cylinder.

  • PDF

A Characteristics of Transient fluid flow in a Hydraulic circular pipe (유압(油壓) 관로(管路) 내(內)에서 유체(流體) 유동(流動)의 과도응답특성(過渡應答特性)에 관(關)한 이론적연구(理論的硏究))

  • Kim, H.J.;Jung, J.C.;Yoo, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.829-834
    • /
    • 2000
  • This paper is primarily directed toward analyzing the transient response characteristics in hydraulic pipe lines. The exact solution to the transient response characteristics was obtained by using the complicated transfer function derived by Iberall. The discrepancy with the exact and approximate is small, so the approximate solution is adopted to the theoretical one. An equation was derived which describes the pressure times relationship Hat occurs at the end of volume terminated transmission line following a sudden pressure change at its inputs. As a result, It is found that the density has relationship about the Wave Propagation is very useful in analyzing the transient response characteristics of hydraulic pipe lines. The velocity of Pressure wave Propagation decreases as the density of fluid increased.

  • PDF

복합재료 적층판의 유한요소법 기반 역학적 거동 해석

  • Im, Yeong-Nam;Cheon, Jae-Hui;Lee, Ho-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.285-291
    • /
    • 2015
  • In this paper, a composite material analysis program based on the finite element method(FEM) is used. The purpose of this study was to verify whether the composite material analysis program which developed as part of a project of development of softwares and educational contents for structural vibration and composite material analysis that can calculate how similar the macroscopic mechanical behavior of the composite materials actually. Because composite materials are generally anisotropic, analysis of composite laminate is used for the constitutive equations of orthotropic material. For convenience, the unit is ommited in all calculations. To verify the accuracy of the finite element method based program, the deflection and stress distribution of the simply supported composite material laminated plate subjected to a uniform load distribution is compared with exact solution. Size and properties of the composite material laminate used for analysis are fixed variables, and by changing the number of elements and the total thickness of the laminate is compared with the exact solution to the resulting value, respectively.

  • PDF

Large deflection behavior of a flexible circular cantilever arc device subjected to inward or outward polar force

  • Al-Sadder, Samir Z.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.433-447
    • /
    • 2006
  • The problem of very large deflection of a circular cantilever arc device subjected to inward or outward polar force is studied. An exact elliptic integral solution is derived for the two cases and the results are checked using large displacement finite element analysis via the ANSYS package by performing a new novel modeling simulation technique for this problem. Excellent agreements have been obtained between the exact analytical solution and the numerical approach. From this study, a design chart for engineers is developed to predict the required value for the inward polar force for the device to switch on for a given angle forming the circular arc (${\theta}_o$). This study has several interesting applications in mechanical engineering, integrated circuit technology, nanotechnology and especially in microelectromechanical systems (MEMs) such as a MEM circular device switch subjected to attractive or repulsive magnetic forces due to the attachments of two magnetic poles at the fixed and at the free end of the circular cantilever arc switch device.