• Title/Summary/Keyword: Exact Image

Search Result 522, Processing Time 0.027 seconds

A Study on Car License Plate Extraction using ACL Algorithm (ACL 알고리즘을 이용한 자동차 번호판 영역 추출에 대한 연구)

  • Jang, Seung-Ju;Shin, Byoung-Chul
    • The KIPS Transactions:PartD
    • /
    • v.9D no.6
    • /
    • pp.1113-1118
    • /
    • 2002
  • In recognition system of the car license plate, the most important is to extract the image of the license plate from a car image. In this paper, we use ACL (Adaptive Color Luminance) algorithm to extract the license plate image from a car image. The ACL algorithm that uses color and luminance information of a car image is used to extract the image of the license plate. In this paper, color, luminance and other related information of a car image are used to extract the image of the license plate from that of a car. In this reason, we call it the ACL algorithm. The ACL algorithm uses color, luminance information and other related information of a license plate. These informations are avaliable to exact the image of the license plate. The rate of extracting the image of the license plate from a car is 97%. The experimental result of the ACL algorithm for the character region is 92%.

DEVELOPMENT OF AN AMPHIBIOUS ROBOT FOR VISUAL INSPECTION OF APR1400 NPP IRWST STRAINER ASSEMBLY

  • Jang, You Hyun;Kim, Jong Seog
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • An amphibious inspection robot system (hereafter AIROS) is being developed to visually inspect the in-containment refueling storage water tank (hereafter IRWST) strainer in APR1400 instead of a human diver. Four IRWST strainers are located in the IRWST, which is filled with boric acid water. Each strainer has 108 sub-assembly strainer fin modules that should be inspected with the VT-3 method according to Reg. guide 1.82 and the operation manual. AIROS has 6 thrusters for submarine voyage and 4 legs for walking on the top of the strainer. An inverse kinematic algorithm was implemented in the robot controller for exact walking on the top of the IRWST strainer. The IRWST strainer has several top cross braces that are extruded on the top of the strainer, which can be obstacles of walking on the strainer, to maintain the frame of the strainer. Therefore, a robot leg should arrive at the position beside the top cross brace. For this reason, we used an image processing technique to find the top cross brace in the sole camera image. The sole camera image is processed to find the existence of the top cross brace using the cross edge detection algorithm in real time. A 5-DOF robot arm that has multiple camera modules for simultaneous inspection of both sides can penetrate narrow gaps. For intuitive presentation of inspection results and for management of inspection data, inspection images are stored in the control PC with camera angles and positions to synthesize and merge the images. The synthesized images are then mapped in a 3D CAD model of the IRWST strainer with the location information. An IRWST strainer mock-up was fabricated to teach the robot arm scanning and gaiting. It is important to arrive at the designated position for inserting the robot arm into all of the gaps. Exact position control without anchor under the water is not easy. Therefore, we designed the multi leg robot for the role of anchoring and positioning. Quadruped robot design of installing sole cameras was a new approach for the exact and stable position control on the IRWST strainer, unlike a traditional robot for underwater facility inspection. The developed robot will be practically used to enhance the efficiency and reliability of the inspection of nuclear power plant components.

Image Mosaicing using Voronoi Distance Matching (보로노이 거리(Voronoi Distance)정합을 이용한 영상 모자익)

  • 이칠우;정민영;배기태;이동휘
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.7
    • /
    • pp.1178-1188
    • /
    • 2003
  • In this paper, we describe image mosaicing techniques for constructing a large high-resolution image with images taken by a video camera in hand. we propose the method which is automatically retrieving the exact matching area using color information and shape information. The proposed method extracts first candidate areas which have similar form using a Voronoi Distance Matching Method which is rapidly estimating the correspondent points between adjacent images, and calculating initial transformations of them and finds the final matching area using color information. It is a method that creates Voronoi Surface which set the distance value among feature points and other points on the basis of each feature point of a image, and extracts the correspondent points which minimize Voronoi Distance in matching area between an input image and a basic image using the binary search method. Using the Levenberg-Marquadt method we turn an initial transformation matrix to an optimal transformation matrix, and using this matrix combine a basic image with a input image.

  • PDF

PROTOTYPE AUTOMATIC SYSTEM FOR CONSTRUCTING 3D INTERIOR AND EXTERIOR IMAGE OF BIOLOGICAL OBJECTS

  • Park, T. H.;H. Hwang;Kim, C. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.318-324
    • /
    • 2000
  • Ultrasonic and magnetic resonance imaging systems are used to visualize the interior states of biological objects. These nondestructive methods have many advantages but too much expensive. And they do not give exact color information and may miss some details. If it is allowed to destruct some biological objects to get the interior and exterior information, constructing 3D image from the series of the sliced sectional images gives more useful information with relatively low cost. In this paper, PC based automatic 3D model generator was developed. The system was composed of three modules. One is the object handling and image acquisition module, which feeds and slices objects sequentially and maintains the paraffin cool to be in solid state and captures the sectional image consecutively. The second is the system control and interface module, which controls actuators for feeding, slicing, and image capturing. And the last is the image processing and visualization module, which processes a series of acquired sectional images and generates 3D graphic model. The handling module was composed of the gripper, which grasps and feeds the object and the cutting device, which cuts the object by moving cutting edge forward and backward. Sliced sectional images were acquired and saved in the form of bitmap file. The 3D model was generated to obtain the volumetric information using these 2D sectional image files after being segmented from the background paraffin. Once 3-D model was constructed on the computer, user could manipulate it with various transformation methods such as translation, rotation, scaling including arbitrary sectional view.

  • PDF

The Verification of Image Merging for Lumber Scanning System (제재목 화상입력시스템의 화상병합 성능 검증)

  • Kim, Byung Nam;Kim, Kwang Mo;Shim, Kug-Bo;Lee, Hyoung Woo;Shim, Sang-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.556-565
    • /
    • 2009
  • Automated visual grading system of lumber needs correct input image. In order to create a correct image of domestic red pine lumber 3.6 m long feeding on a conveyer, part images were captured using area sensor and template matching algorithm was applied to merge part images. Two kinds of template matching algorithms and six kinds of template sizes were adopted in this operation. Feature extracted method appeared to have more excellent image merging performance than fixed template method. Error length was attributed to a decline of similarity related by difference of partial brightness on a part image, specific pattern and template size. The mismatch part was repetitively generated at the long grain. The best size of template for image merging was $100{\times}100$ pixels. In a further study, assignment of exact template size, preprocessing of image merging for reduction of brightness difference will be needed to improve image merging.

Hierarchical Image Processing Method For Context-Awareness On Ubiquitous-Safety(U-Safety) (유비쿼터스 안전관리(U-Safety) 상에서의 상황인지를 위한 계층적 영상 처리 시스템)

  • Lim, Chul-Hoo;Song, Kang-Suk;Jeong, Moo-Il;Lee, Yong-Woog;Moon, SungMo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.553-557
    • /
    • 2009
  • USS(Ubiquitous Smart Space) give services, that fit in with customer's goal, by cognizing various situations that happens in a space and cooperating autonomously objects or services in a space. In USS, U-Safety is a system that cognizes more exact situations with multiple sensors in USS, deals with this and take proper actions. When men reason on situations objectively, it is most ideal that image data among collected data with used various sensors in U-Safety. A senter collects a lot of image data from image input devices equipped in various points and work a multiple situation cognition and inference that are based on this. So, senters spend many resources for processing massive data. This paper proposes hierarchical image processing method that does the first situation cognization in image input devices, blocks only points that situation cognization possibility is high among a total image, and transfers to senters. It improves the efficiency of smooth situation cognization by reducing resources that a senter spends on image processing. So, it reduces proportion of image data in U-Safety.

  • PDF

Self-localization of a Mobile Robot for Decreasing the Error and VRML Image Overlay (오차 감소를 위한 이동로봇 Self-Localization과 VRML 영상오버레이 기법)

  • Kwon Bang-Hyun;Shon Eun-Ho;Kim Young-Chul;Chong Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.389-394
    • /
    • 2006
  • Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localization technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.

Image Segmentation Based on the Fuzzy Clustering Algorithm using Average Intracluster Distance (평균내부거리를 적용한 퍼지 클러스터링 알고리즘에 의한 영상분할)

  • You, Hyu-Jai;Ahn, Kang-Sik;Cho, Seok-Je
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.9
    • /
    • pp.3029-3036
    • /
    • 2000
  • Image segmentation is one of the important processes in the image information extraction for computer vision systems. The fuzzy clustering methods have been extensively used in the image segmentation because it extracts feature information of the region. Most of fuzzy clustering methods have used the Fuzzy C-means(FCM) algorithm. This algorithm can be misclassified about the different size of cluster because the degree of membership depends on highly the distance between data and the centroids of the clusters. This paper proposes a fuzzy clustering algorithm using the Average Intracluster Distance that classifies data uniformly without regard to the size of data sets. The Average Intracluster Distance takes an average of the vector set belong to each cluster and increases in exact proportion to its size and density. The experimental results demonstrate that the proposed approach has the g

  • PDF

A Study on Visual Feedback Control of a Dual Arm Robot with Eight Joints

  • Lee, Woo-Song;Kim, Hong-Rae;Kim, Young-Tae;Jung, Dong-Yean;Han, Sung-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.610-615
    • /
    • 2005
  • Visual servoing is the fusion of results from many elemental areas including high-speed image processing, kinematics, dynamics, control theory, and real-time computing. It has much in common with research into active vision and structure from motion, but is quite different from the often described use of vision in hierarchical task-level robot control systems. We present a new approach to visual feedback control using image-based visual servoing with the stereo vision in this paper. In order to control the position and orientation of a robot with respect to an object, a new technique is proposed using a binocular stereo vision. The stereo vision enables us to calculate an exact image Jacobian not only at around a desired location but also at the other locations. The suggested technique can guide a robot manipulator to the desired location without giving such priori knowledge as the relative distance to the desired location or the model of an object even if the initial positioning error is large. This paper describes a model of stereo vision and how to generate feedback commands. The performance of the proposed visual servoing system is illustrated by the simulation and experimental results and compared with the case of conventional method for dual-arm robot made in Samsung Electronics Co., Ltd.

  • PDF

A Fuzzy System Representation of Functions of Two Variables and its Application to Gray Scale Images

  • Moon, Byung-soo;Kim, Young-taek;Kim, Jang-yeol
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.569-573
    • /
    • 2001
  • An approximate representation of discrete functions {f$_{i,j}\mid$|i, j=-1, 0, 1, …, N+1}in two variables by a fuzzy system is described. We use the cubic B-splines as fuzzy sets for the input fuzzification and spike functions as the output fuzzy sets. The ordinal number of f$_{i,j}$ in the sorted list is taken to be the out put fuzzy set number in the (i, j) th entry of the fuzzy rule table. We show that the fuzzy system is an exact representation of the cubic spline function s(x, y)=$\sum_{N+1}^{{i,j}=-1}f_{i,j}B_i(x)B_j(y)$ and that the approximation error S(x, y)-f(x, y) is surprisingly O($h^2$) when f(x, y) is three times continuously differentiable. We prove that when f(x, y) is a gray scale image, then the fuzzy system is a smoothed representation of the image and the original image can be recovered exactly from its fuzzy system representation when it is a digitized image.e.

  • PDF