• Title/Summary/Keyword: Evolutionary strategy

Search Result 200, Processing Time 0.022 seconds

Advanced Technologies and Mechanisms for Yeast Evolutionary Engineering

  • Ryu, Hong-Yeoul
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.423-428
    • /
    • 2020
  • In vitro evolution is a powerful technique for the engineering of yeast strains to study cellular mechanisms associated with evolutionary adaptation; strains with desirable traits for industrial processes can also be generated. There are two distinct approaches to generate evolved strains in vitro: the sequential transfer of cells in the stationary phase into fresh medium or the continuous growth of cells in a chemostat bioreactor via the constant supply of fresh medium. In culture, evolutionary forces drive diverse adaptive mechanisms within the cell to overcome environmental or intracellular stressors. Especially, this engineering strategy has expanded to the field of human cell lines; the understanding of such adaptive mechanisms provides promising targets for the treatment of human genetic diseases and cancer. Therefore, this technology has the potential to generate numerous industrial, medical, and academic applications.

Game Model Based Co-evolutionary Solution for Multiobjective Optimization Problems

  • Sim, Kwee-Bo;Kim, Ji-Yoon;Lee, Dong-Wook
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real-world problems encountered by engineers involve simultaneous optimization of competing objectives. In this case instead of single optima, there is a set of alternative trade-offs, generally known as Pareto-optimal solutions. The use of evolutionary algorithms Pareto GA, which was first introduced by Goldberg in 1989, has now become a sort of standard in solving Multiobjective Optimization Problems (MOPs). Though this approach was further developed leading to numerous applications, these applications are based on Pareto ranking and employ the use of the fitness sharing function to maintain diversity. Another scheme for solving MOPs has been presented by J. Nash to solve MOPs originated from Game Theory and Economics. Sefrioui introduced the Nash Genetic Algorithm in 1998. This approach combines genetic algorithms with Nash's idea. Another central achievement of Game Theory is the introduction of an Evolutionary Stable Strategy, introduced by Maynard Smith in 1982. In this paper, we will try to find ESS as a solution of MOPs using our game model based co-evolutionary algorithm. First, we will investigate the validity of our co-evolutionary approach to solve MOPs. That is, we will demonstrate how the evolutionary game can be embodied using co-evolutionary algorithms and also confirm whether it can reach the optimal equilibrium point of a MOP. Second, we will evaluate the effectiveness of our approach, comparing it with other methods through rigorous experiments on several MOPs.

Optimal Setting of Overcurrent Relay in Distribution Systems Using Adaptive Evolutionary Algorithm (적응진화연산을 이용한 배전계통의 과전류계전기 최적 정정치 결정)

  • Jeong, Hee-Myung;Lee, Hwa-Seok;Park, June-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1521-1526
    • /
    • 2007
  • This paper presents the application of Adaptive Evolutionary Algorithm (AEA) to search an optimal setting of overcurrent relay coordination to protect ring distribution systems. The AEA takes the merits of both a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner to use the global search capability of GA and the local search capability of ES. The overcurrent relay settings and coordination requirements are formulated into a set of constraint equations and an objective function is developed to manage the overcurrent relay settings by the Time Coordination Method. The domain of overcurrent relays coordination for the ring-fed distribution systems is a non-linear system with a lot of local optimum points and a highly constrained optimization problem. Thus conventional methods fail in searching for the global optimum. AEA is employed to search for the optimum relay settings with maximum satisfaction of coordination constraints. The simulation results show that the proposed method can optimize the overcurrent relay settings, reduce relay mis-coordinated operations, and find better optimal overcurrent relay settings than the present available methods.

A Rational Operation Scheduling Using Evolutionary Algorithm on Industrial Cogeneration System (산업용 열병합발전시스템에서 진화 알고리즘을 이용한 합리적 운전계획 수립에 관한 연구)

  • Choi, Kwang-Beom;Jeong, Ji-Hoon;Lee, Jong-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.10
    • /
    • pp.494-501
    • /
    • 2000
  • This paper describes a strategy of a daily optimal operational scheduling in cogeneration system for paper mill. The cogeneration system selected to establish the scheduling consists of three units and several auxiliary devices. One unit generates electrical and thermal energy using the back pressure turbine. The rest two units generate the energy using the extraction condensing turbine. Three auxiliary boilers, two waste boilers and three sludge incinerators operate to supply energy to the loads with three units. The cogeneration system is able to supply enough the thermal energy to the thermal load, however it can not sufficiently supply the electrical power to the electrical load. Therefore the insufficient electric energy is compensated by buying electrical energy from utility. When the operational scheduling is performed considering the environmental problem. This paper shows the simulation results for daily operational scheduling obtained using the evolutionary algorithm. This results reveal that the proposed modeling and strategy can be effectively applied to cogeneration system for paper mill.

  • PDF

Implementation and Design of a Fuzzy Power System Stabilizer Using an Adaptive Evolutionary Algorithm

  • Hwang, Gi-Hyun;Lee, Min-Jung;Park, June-Ho;Kim, Gil-Jung
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.181-190
    • /
    • 2003
  • This paper presents the design of a fuzzy power system stabilizer (FPSS) using an adaptive evolutionary algorithm (AEA). AEA consists of genetic algorithm (GA) for a global search capability and evolution strategy (ES) for a local search in an adaptive manner when the present generation evolves into the next generation. AEA is used to optimize the membership functions and scaling factors of the FPSS. To evaluate the usefulness of the FPSS, we applied it to a single-machine infinite bus system (SIBS) and a power system simulator at the Korea Electrotechnology Research Institute. The FPSS displays better control performance than the conventional power system stabilizer (CPSS) for a three-phase fault in heavy load, which is used when tuning FPSS. To show the robustness of the FPSS, it is applied with disturbances such as change of mechanical torque and three-phase fault in nominal and heavy load, etc. The FPSS also demonstrates better robustness than the CPSS. Experimental results indicate that the FPSS has good system damping under various disturbances such as one-line to ground faults, line parameter changes, transformer tap changes, etc.

Exploration of Innovation Typology and Evolutionary Trajectories of Financial Super App (금융 슈퍼앱 혁신 유형 분류 및 진화 경로 분석 연구)

  • Jewon Yoo;Chie Hoon Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.4_2
    • /
    • pp.909-923
    • /
    • 2024
  • This study aims to classify the types of financial super apps and analyzes their evolution and growth paths by type. Super apps, which provide various services on a single platform, are gaining attention as a key strategy for digital transformation in the financial sector. By adopting the grounded theory methodology, this research has categorized financial super apps into three types: "lifestyle financial super app", "integrated financial super app", and "universal financial super app". Ansoff Matrix was used as a theoretical framework to understand how each type of super app grew and evolved through various strategies. Our analysis revealed that super apps of each type grew using a different mix of 'market penetration', 'product development', 'mark et development', and 'diversification' strategies, with each mix showcasing a distinct evolutionary path. The findings of this study are expected to enhance understanding of financial super app typology and evolutionary trajectories, contributing to the development of practical strategies, such as channel optimization for financial super apps in the future.

Analyzing the Evolutionary Stability for Behavior Strategies in Reverse Supply Chain

  • Tomita, Daijiro;Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.1
    • /
    • pp.44-57
    • /
    • 2015
  • In recent years, for the purpose of solving the problem regarding environment protection and resource saving, certain measures and policies have been promoted to establish a reverse supply chains (RSCs) with material flows from collection of used products to reuse the recycled parts in production of products. It is necessary to analyze behaviors of RSC members to determine the optimal operation. This paper discusses a RSC with a retailer and a manufacturer and verifies the behavior strategies of RSC members which may change over time in response to changes parameters related to the recycling promotion activity in RSC. A retailer takes two behaviors: cooperation/non-cooperation in recycling promotion activity. A manufacturer takes two behaviors: monitoring/non-monitoring of behaviors of the retailer. Evolutionary game theory combining the evolutionary theory of Darwin with game theory is adopted to clarify analytically evolutionary outcomes driven by a change in each behavior of RSC members over time. The evolutionary stable strategies (ESSs) for RSC members' behaviors are derived by using the replicator dynamics. The analysis numerically demonstrates how parameters of the recycling promotion activity: (i) sale promotion cost, (ii) monitoring cost, (iii) compensation and (iv) penalty cost affect the judgment of ESSs of behaviors of RSC members.

Behavior Evolution of Autonomous Mobile Robot(AMR) using Genetic Programming Based on Evolvable Hardware

  • Sim, Kwee-Bo;Lee, Dong-Wook;Zhang, Byoung-Tak
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.20-25
    • /
    • 2002
  • This paper presents a genetic programming based evolutionary strategy for on-line adaptive learnable evolvable hardware. Genetic programming can be useful control method for evolvable hardware for its unique tree structured chromosome. However it is difficult to represent tree structured chromosome on hardware, and it is difficult to use crossover operator on hardware. Therefore, genetic programming is not so popular as genetic algorithms in evolvable hardware community in spite of its possible strength. We propose a chromosome representation methods and a hardware implementation method that can be helpful to this situation. Our method uses context switchable identical block structure to implement genetic tree on evolvable hardware. We composed an evolutionary strategy for evolvable hardware by combining proposed method with other's striking research results. Proposed method is applied to the autonomous mobile robots cooperation problem to verify its usefulness.

Optimum Design of a Shield Plate to minimize Extremely-Law-Frequency Magnetic Fields produced by Bus Bars (분전반 모선에 의해 발생되는 극저주파 자기장 저감을 위한 차폐판 최적 설계)

  • Jeung, Gi-Woo;Choi, Nak-Sun;Kim, Dong-Hun;Jang, Nak-Won;Lee, Dong-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • This paper deals with the optimal design of a shield plate in order to minimize Extremely-Low-Frequency(ELF) magnetic fields generated from three-phase bus bars. Combining an evolutionary strategy with a 3D finite element analysis tool, the main dimensions of the shield plate are sought out. The optimization procedure consists of two separated design stages to take into account all foreseen structures of the plate. In the first stage, the basic dimensions of the plate are optimized including the distance between the plate and the bus bars. Then the usefulness of the additional structures such as a slit and fillet is investigated in the second stage. Finally the optimum design of the shield plate is suggested from the viewpoint of the shielding effectiveness and manufacturing cost.

Design of Evolvable Hardware for Behavior Evolution of Autonomous Mobile Robots (자율이동로봇의 행동진화를 위한 진화하드웨어 설계)

  • 이동욱;반창봉;전호병;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.254-254
    • /
    • 2000
  • This paper presents a genetic programming based evolutionary strategy for on-line adaptive learnable evolvable hardware. genetic programming can be useful control method for evolvable hardware for its unique tree structured chromosome. However it is difficult to represent tree structured chromosome on hardware, and it is difficult to use crossover operator on hardware. Therefore, genetic programming is not so popular as genetic algorithms in evolvable hardware community in spite of its possible strength. We propose a chromosome representation methods and a hardware implementation method that can be helpful to this situation. Our method uses context switchable identical block structure to implement genetic tree on evolvable hardware. We composed an evolutionary strategy (or evolvable hardware by combining proposed method with other's striking research results. Proposed method is applied to the autonomous mobile robots cooperation problem to verify its usefulness.

  • PDF