• Title/Summary/Keyword: Evolutionary mechanism

Search Result 112, Processing Time 0.02 seconds

An Integrated Planning of Production and Distribution in Supply Chain Management using a Multi-Level Symbiotic Evolutionary Algorithm (다계층 공생 진화알고리듬을 이용한 공급사슬경영의 생산과 분배의 통합계획)

  • 김여근;민유종
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.2
    • /
    • pp.1-15
    • /
    • 2003
  • This paper presents a new evolutionary algorithm to solve complex multi-level integration problems, which is called multi-level symbiotic evolutionary algorithm (MEA). The MEA uses an efficient feedback mechanism to flow evolution information between and within levels, to enhance parallel search capability, and to improve convergence speed and population diversity. To show the MEA's applicability, It is applied to the integrated planning of production and distribution in supply chain management. The encoding and decoding methods are devised for the integrated problem. A set of experiments has been carried out, and the results are reported. The superiority of the algorithm's performance is demonstrated through experiments.

A Study of Cooperative Mechanism in Social Games (소셜게임의 협력 매커니즘 연구)

  • Lee, Dong-Eun
    • Journal of Korea Game Society
    • /
    • v.12 no.4
    • /
    • pp.3-12
    • /
    • 2012
  • This study discusses how players make the mutually cooperative mechanism in Social Games. In SNG, many players exchange helps each other. That mechanism is not only one-off but also repetitive process. In the perspective of reciprocity in Evolutionary psychology and Mythology, this study analyzes mutual cooperation in several game texts most well known in the SNG field. According to the field study results, four cooperative mechanisms were extracted. These 4 principles apply to every digital game design for emerging of cooperative storytelling among players.

IEM-based Tone Injection for Peak-to-Average Power Ratio Reduction of Multi-carrier Modulation

  • Zhang, Yang;Zhao, Xiangmo;Hou, Jun;An, Yisheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4502-4517
    • /
    • 2019
  • Tone Injection (TI) scheme significantly reduces the peak-to-average power ratio (PAPR) of Multicarrier Modulation (MCM). However, the computational complexity of the TI scheme rises exponentially with the extra freedom constellation number. Therefore, a novel immune evolutionary mechanism-based TI scheme is proposed in this paper to reduce the computational complexity. By restraining undesirable degeneracy during the processing, this IEM scheme can dramatically increase the population fitness. Monte Carlo results show that proposed IEM-based TI scheme can achieve a significant PAPR and BER improvement with a low complexity.

Evolutionary Neural Networks based on DNA coding and L-system (DNA Coding 및 L-system에 기반한 진화신경회로망)

  • 이기열;전호병;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.107-110
    • /
    • 2000
  • In this paper, we propose a method of constructing neural networks using bio-inspired emergent and evolutionary concepts. This method is algorithm that is based on the characteristics of the biological DNA and growth of plants. Here is, we propose a constructing method to make a DNA coding method for production rule of L-system. L-system is based on so-called the parallel rewriting mechanism. The DNA coding method has no limitation in expressing the production rule of L-system. Evolutionary algorithms motivated by Darwinian natural selection are population based searching methods and the high performance of which is highly dependent on the representation of solution space. In order to verify the effectiveness of our scheme, we apply it to one step ahead prediction of Mackey-Glass time series.

  • PDF

Elucidation of Multifaceted Evolutionary Processes of Microorganisms by Comparative Genome-Based Analysis

  • Nguyen, Thuy Vu An;Hong, Soon-Ho;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1301-1305
    • /
    • 2009
  • The evolution of living organisms occurs via a combination of highly complicated processes that involve modification of various features such as appearance, metabolism and sensing systems. To understand the evolution of life, it is necessary to understand how each biological feature has been optimized in response to new environmental conditions and interrelated with other features through evolution. To accomplish this, we constructed contents-based trees for a two-component system (TCS) and metabolic network to determine how the environmental communication mechanism and the intracellular metabolism have evolved, respectively. We then conducted a comparative analysis of the two trees using ARACNE to evaluate the evolutionary and functional relationship between TCS and metabolism. The results showed that such integrated analysis can give new insight into the study of bacterial evolution.

Evolutionary Neural Network based on DNA Coding Method for Time Series Prediction (시계열 예측을 위한 DNA코딩 기반의 신경망 진화)

  • 이기열;이동욱;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.224-227
    • /
    • 2000
  • In this Paper, we prepose a method of constructing neural networks using bio-inspired emergent and evolutionary concepts. This method is algorithm that is based on the characteristics of the biological DNA and growth of plants. Here is, we propose a constructing method to make a DNA coding method for production rule of L-system. L-system is based on so-called the parallel rewriting mechanism. The DNA coding method has no limitation in expressing the production rule of L-system. Evolutionary algorithms motivated by Darwinian natural selection are population based searching methods and the high performance of which is highly dependent on the representation of solution space. In order to verify the effectiveness of our scheme, we apply it to one step ahead prediction of Mackey-Glass time series, Sun spot data and KOSPI data.

  • PDF

A Study on Performance Improvement of Evolutionary Algorithms Using Reinforcement Learning (강화학습을 이용한 진화 알고리즘의 성능개선에 대한 연구)

  • 이상환;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.420-426
    • /
    • 1998
  • Evolutionary algorithms are probabilistic optimization algorithms based on the model of natural evolution. Recently the efforts to improve the performance of evolutionary algorithms have been made extensively. In this paper, we introduce the research for improving the convergence rate and search faculty of evolution algorithms by using reinforcement learning. After providing an introduction to evolution algorithms and reinforcement learning, we present adaptive genetic algorithms, reinforcement genetic programming, and reinforcement evolution strategies which are combined with reinforcement learning. Adaptive genetic algorithms generate mutation probabilities of each locus by interacting with the environment according to reinforcement learning. Reinforcement genetic programming executes crossover and mutation operations based on reinforcement and inhibition mechanism of reinforcement learning. Reinforcement evolution strategies use the variances of fitness occurred by mutation to make the reinforcement signals which estimate and control the step length.

  • PDF

Evaluation of Problems in Tourism Systems and Their Evolutionary Status Based on Self-Organization Theory

  • Enhou Zu;Haoming Wen;Minghung Shu;Chih-Lung Yu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.6
    • /
    • pp.1500-1517
    • /
    • 2024
  • With the rapid development of the tourism economy, large-scale construction of tourist attractions to achieve resource utilization and ensure the healthy development of the tourism industry has become a hot topic. However, there are still issues with resource utilization and coordinated management in the economic development of the tourism industry, which in turn affects the coordinated development of the tourism industry economy. Therefore, this study utilizes self-organization theory to explore the structure, organizational mechanism, conditional driving force of evolution, and evolutionary operation mechanism of the tourism system, analyze the current tourism situation in Hunan Province and related regions, and construct a self-organization evolution model of the tourism system. The result shows that the cumulative variance contribution rate of tourism areas in Hunan Province is 78.8%, with Zhangjiajie having the highest industrial management factors and tourism resource levels in the province, with 1.6 and 3.2 respectively. Hunan Province has abundant tourism resources but overall uneven development, with a comprehensive score of -1.03. Therefore, it is necessary to leverage the coordination advantages of various departments and industries to promote sustainable and healthy development of tourism areas. The self-organizing evolution of the tourism system not only discovers the current problems of the tourism industry, but also provides theoretical support and mechanism suggestions for the tourism system.

Improved marine predators algorithm for feature selection and SVM optimization

  • Jia, Heming;Sun, Kangjian;Li, Yao;Cao, Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1128-1145
    • /
    • 2022
  • Owing to the rapid development of information science, data analysis based on machine learning has become an interdisciplinary and strategic area. Marine predators algorithm (MPA) is a novel metaheuristic algorithm inspired by the foraging strategies of marine organisms. Considering the randomness of these strategies, an improved algorithm called co-evolutionary cultural mechanism-based marine predators algorithm (CECMPA) is proposed. Through this mechanism, search agents in different spaces can share knowledge and experience to improve the performance of the native algorithm. More specifically, CECMPA has a higher probability of avoiding local optimum and can search the global optimum quickly. In this paper, it is the first to use CECMPA to perform feature subset selection and optimize hyperparameters in support vector machine (SVM) simultaneously. For performance evaluation the proposed method, it is tested on twelve datasets from the university of California Irvine (UCI) repository. Moreover, the coronavirus disease 2019 (COVID-19) can be a real-world application and is spreading in many countries. CECMPA is also applied to a COVID-19 dataset. The experimental results and statistical analysis demonstrate that CECMPA is superior to other compared methods in the literature in terms of several evaluation metrics. The proposed method has strong competitive abilities and promising prospects.

Structural parameter estimation combining domain decomposition techniques with immune algorithm

  • Rao, A. Rama Mohan;Lakshmi, K.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.343-365
    • /
    • 2011
  • Structural system identification (SSI) is an inverse problem of difficult solution. Currently, difficulties lie in the development of algorithms which can cater to large size problems. In this paper, a parameter estimation technique based on evolutionary strategy is presented to overcome some of the difficulties encountered in using the traditional system identification methods in terms of convergence. In this paper, a non-traditional form of system identification technique employing evolutionary algorithms is proposed. In order to improve the convergence characteristics, it is proposed to employ immune algorithms which are proved to be built with superior diversification mechanism than the conventional evolutionary algorithms and are being used for several practical complex optimisation problems. In order to reduce the number of design variables, domain decomposition methods are used, where the identification process of the entire structure is carried out in multiple stages rather than in single step. The domain decomposition based methods also help in limiting the number of sensors to be employed during dynamic testing of the structure to be identified, as the process of system identification is carried out in multiple stages. A fifteen storey framed structure, truss bridge and 40 m tall microwave tower are considered as a numerical examples to demonstrate the effectiveness of the domain decomposition based structural system identification technique using immune algorithm.