• 제목/요약/키워드: Evolutionary biology

검색결과 251건 처리시간 0.049초

Diversity and origin of bottle gourd, Lagenaria

  • Yuasa, Hiroshi
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2002년도 제9차 국제심포지움 및 추계정기학술발표회
    • /
    • pp.13-14
    • /
    • 2002
  • Bottle gourd, Lagenaria siceraria, is one of the oldest cultivated plants. To bigin with, its fruit was used as a complete liquid bottle or container. It was a very widespread cultivated plant in prehistoric times, for example (there) is a report from Peru as early as between 13,000 B.C and 11,000 B.C. The dug-out finds in Japan proved to be about 95,000 years old according to the $^{14}$ C analysis. The bottle grourd was the most important plant before the invention of pottery in many areas of Asia, New Guinea, Polynesia, America, and Africa. I would like to suggest that there should be “The Bottle Gourd Age” prior to the Pottery Age.(중략)

  • PDF

비피도박테리아의 분자생물학적인 연구 동향 (Genomic Research of the Genus Bifidobacterium and Its Application)

  • 김근배
    • Journal of Dairy Science and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.21-28
    • /
    • 2007
  • Recently, the field of microbiology has been transformed by huge increasing number of publicly available whole-genome sequences. This sequence information has significantly enhanced our understanding of the physiology, genetics, and evolutionary development of bacteria. Among the gastrointestinal microorganisms, bifidobacteria represent the most important human commensals because of their contribution to maintaining a balanced gastrointestinal tract microbiota. In recent years bifidobacteria have drawn much scientific attention due to their use as live bacteria in numerous food products with various health-related claims. For this reason, these bacteria constitute a growing area of interest with respect to genomics, molecular biology, and genetics. Recent genome sequencing of a number of bifidobacterial species has allowed access to the complete genetic make-up of these bacteria. This review will focus how genomic data has allowed us to understand bifidobacterial evolution, while also revealing genetic functions that explains their presence in the particular ecological environment of the gastrointestinal tract.

  • PDF

Loss of gene function and evolution of human phenotypes

  • Oh, Hye Ji;Choi, Dongjin;Goh, Chul Jun;Hahn, Yoonsoo
    • BMB Reports
    • /
    • 제48권7호
    • /
    • pp.373-379
    • /
    • 2015
  • Humans have acquired many distinct evolutionary traits after the human-chimpanzee divergence. These phenotypes have resulted from genetic changes that occurred in the human genome and were retained by natural selection. Comparative primate genome analyses reveal that loss-of-function mutations are common in the human genome. Some of these gene inactivation events were revealed to be associated with the emergence of advantageous phenotypes and were therefore positively selected and fixed in modern humans (the "less-ismore" hypothesis). Representative cases of human gene inactivation and their functional implications are presented in this review. Functional studies of additional inactive genes will provide insight into the molecular mechanisms underlying acquisition of various human-specific traits. [BMB Reports 2015; 48(7): 373-379]

식물의 생장 및 발달과정에서 Glycogen synthase kinase 3 (GSK3) 유전자의 역할 (The functional roles of plant glycogen synthase kinase 3 (GSK3) in plant growth and development)

  • 류호진
    • Journal of Plant Biotechnology
    • /
    • 제42권1호
    • /
    • pp.1-5
    • /
    • 2015
  • The biological roles of glycogen synthase kinase 3 (GSK3) proteins have long been extensively explored in eukaryotic organisms including fungi, animals and plants. This gene family has evolutionary well conserved kinase domain and shares similar phosphorylation properties to their substrate proteins. However, their specific biological roles are surprisingly distinct in different organisms. GSK3s play key role in key regulating the cytoskeleton and metabolic processes in animal systems, but plant GSKs are involved in quite different processes, such as flower development, brassinosteroid signaling, abiotic stresses, and organogenesis. In particular, recent studies have reported the critical multiple functions of BIN2 and its related paralogues plant GSK3s during organogenesis via connecting hormonal or developmental programs. In this review, we outline the recent understanding in the versatile functions related in physiological and biochemical relevance, which are mediated by plant GSK3s in various cellular signaling.

협력형 개체 수 동역학에 대한 1900년대 연구 (Researches in 1900's on cooperative population dynamics)

  • 장정욱;심성아
    • 한국수학사학회지
    • /
    • 제33권3호
    • /
    • pp.167-177
    • /
    • 2020
  • Cooperative behavior may seem contrary to the notion of natural selection and adaptation, but is widely observed in nature, from the genetic level to the organism. The origin and persistence of cooperative behavior has long been a mystery to scientists studying evolution and ecology. One of the important research topics in the field of evolutionary ecology and behavioral ecology is to find out why cooperation is maintained over time. In this paper we take a historical overview of mathematical models representing cooperative relationships from the perspective of mathematical biology, which studies population dynamics between interacting biological groups, and analyze the mathematical characteristics and meanings of these cooperative models.

Bifidobacterium의 분자생물학적 연구 동향 (Genomic Research as a Means to Understand Bacterial Phylogeny and Ecological Adaptation of the Genus Bifidobacterium)

  • 김근배
    • 한국유가공학회:학술대회논문집
    • /
    • 한국유가공기술과힉회 2007년도 추계학술발표대회
    • /
    • pp.21-29
    • /
    • 2007
  • The field of microbiology has in recent years been transformed by huge increasing number of publicly available whole-genome sequences. This sequence information has significantly enhanced our understanding of the physiology, genetics, and evolutionary development of bacteria. Among the gastrointestinal microorganisms, bifidobacteria represent important human commensals because of their perceived contribution to maintaining a balanced gastrointestinal tract microbiota. In recent years bifidobacteria have drawn much scientific attention due to their use as live bacteria in numerous food products with various health-related claims. For this reason, these bacteria constitute a growing area of interest with respect to genomics, molecular biology, and genetics. Recent genome sequencing of a number of bifidobacterial species has allowed access to the complete genetic make-up of these bacteria. This review will focus how genomic data has allowed us to understand bifidobacterial evolution, while also revealing genetic functions that explains their presence in the particular ecological environment of the gastrointestinal tract.

  • PDF

Importance of microbial diversity

  • Ahn, Tae-Seok
    • 한국동물학회:학술대회논문집
    • /
    • 한국동물학회 1995년도 한국생물과학협회 학술발표대회
    • /
    • pp.88-88
    • /
    • 1995
  • Microorganism are centIal core to biosphere sm1ainablity and biogeochemical cycles on this earth. Most of food, medical and pabamceutical new materials through biotechnology are derived from many kinds of microorganisms. Microorganisms are important resources of biotechnology. Beside these, micorbial diversity is key to explore the frontiers of knowledge about the strategies and limits of life. Through the micorotganisms, we can monitor the environmental changes and conditions. Moreover, the microorganismsms play a role in conservation and restoration of higher plants and animals. And we can get a lot of ecological, evolutionary knowledges from microbial models. In spite of these importances, the microbial diversity is not properly evaluted because of their unculturablity. Only 0.001 - 3 % of total bacteria in natural habitats are cultumble and the rest are viable but uncultumble. Only 3,100 species are listed up in the Bergey's Manual. Considering the symbisis and estimated numbers of insect are more than 800,000, the symbiotic microorganisms are about 1,000,000 species. Recently, by using the genetic and molecular technics, the microbial diversity is now unveiled. In this symposium, the genetic, species and ecological diversity will be given. given.

  • PDF

곡선의 형태학적 성장과 변환의 제어 방법 (Control of Morphological Development and Transformation of Curves)

  • 이주행;박형준
    • 한국CDE학회논문집
    • /
    • 제12권5호
    • /
    • pp.354-365
    • /
    • 2007
  • We present novel methods to generate a sequence of shapes that represents the pattern of morphological development or transformation of Bezier curves. The presented methods utilize the intrinsic geometric structures of a Bezier curve that are derived from rib and fan decomposition (RFD). Morphological development based on RFD shows a characteristic pattern of structural growth of a Bezier curve, which is the direct consequence of development path defined by fans. Morphological transformation based RFD utilizes development patterns of source and target curves to mimic the theory of evolutionary developmental biology: although the source and target curves are quite different in shapes, we can easily find similarities in their younger shapes, which makes it easier to set up feature correspondences for blending them. We also show that further controls on base transformation for intensity of feature blending, and extrapolation can compensate the immaturity of blended curves. We demonstrate the experimental results where transformation patterns are smoother and have unique geometric style that cannot be generated using conventional methods based on multi-linear blending.

갈겨니(Zacco temmincki)의 진화에 관한 연구 III. 온도변화에 따른 갈겨니 sMDH 동위효소의 반응성에 대하여 (Evolutionary Study on the Dark Chub (Zacco temmincki) III. The Euect of Reaction Temperature on the Kinetic Mode of Isolated SMDH Isozymes from Zacco temmincki)

  • 강동철;장정순양서영
    • 한국동물학회지
    • /
    • 제30권3호
    • /
    • pp.219-230
    • /
    • 1987
  • Two allelotypes of sMDH variation, namely A and B type, are known in the dark chub, Zacco temmincki. We attempted to clarify their probable functional enzymatic difEerence with temperature change. Two types of sMDH were purified separately by successive chromatography on DEAE-cellulose and blue 2-Sepharose amEnity columns, and their ensymatic activities to temperature change were measured. Q10 of Vmax and Vmax/Km were significantly different between two types, i.e. A type being higher in Q10 values than B type. Based on the result it is assumed that A type may be more sensitive to temperature change than B type.

  • PDF

A Phylogenetic Analysis for Hox Linked Gene Families of Vertebrates

  • Kim, Sun-Woo;Jung, Gi-La;Lee, Jae-Hyoun;Park, Ha-Young;Kim, Chang-Bae
    • Animal cells and systems
    • /
    • 제12권4호
    • /
    • pp.261-267
    • /
    • 2008
  • The human chromosomes 2, 7, 12 and 17 show genomic homology around Hox gene clusters, is taken as evidence that these paralogous gene families might have arisen from a ancestral chromosomal segment through genome duplication events. We have examined protein data from vertebrate and invertebrate genomes to analyze the phylogenetic history of multi-gene families with three or more of their representatives linked to human Hox clusters. Topology comparison based upon statistical significance and information of chromosome location for these genes examined have revealed many of linked genes coduplicated with Hox gene clusters. Most linked genes to Hox clusters share the same evolutionary history and are duplicated in concert with each other. We conclude that gene families linked to Hox clusters may be suggestion of ancient genome duplications.