• Title/Summary/Keyword: Evolution Algorithm

Search Result 642, Processing Time 0.024 seconds

A Study on Container Securing System for Optimum Arrangement (최적 적재를 위한 컨테이너 시큐어링 시스템 개발에 관한 연구)

  • Shin, Sang-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.27 no.4
    • /
    • pp.397-402
    • /
    • 2003
  • Generally, container arrangement has been carried out based on the Classification guidelines. However, guidelines provide only container securing forces for the given container arrangement and Classification requirements of the forces. In order to design container arrangement additional information is needed such as container securing forces and arrangement that accounts for lashing bridges, vertical lashing, vertical center of gravity (VCG), and maximum stack weight. Trial and error method using the existing guidelines requires excessive amount of calculation time and cannot provide accurate results of the calculations. In order to fulfill this need, a new container securing system has been established based on the equilibrium conditions that include lashing bridges and vertical lashing. An optimization algorithm has been developed for the new system since current optimization methods such as genetic algorithms and evolution strategies are unsuitable for the container securing problems, which involve equality constraint. Design variables are container weights of tier and objective function is either total container weight or VCG of a stack. The newly developed system provides optimum arrangement of containers for both maximum stack weight and maximum VCG. It also greatly reduces time for designing container arrangement.

Stochastic modelling and optimum inspection and maintenance strategy for fatigue affected steel bridge members

  • Huang, Tian-Li;Zhou, Hao;Chen, Hua-Peng;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.569-584
    • /
    • 2016
  • This paper presents a method for stochastic modelling of fatigue crack growth and optimising inspection and maintenance strategy for the structural members of steel bridges. The fatigue crack evolution is considered as a stochastic process with uncertainties, and the Gamma process is adopted to simulate the propagation of fatigue crack in steel bridge members. From the stochastic modelling for fatigue crack growth, the probability of failure caused by fatigue is predicted over the service life of steel bridge members. The remaining fatigue life of steel bridge members is determined by comparing the fatigue crack length with its predetermined threshold. Furthermore, the probability of detection is adopted to consider the uncertainties in detecting fatigue crack by using existing damage detection techniques. A multi-objective optimisation problem is proposed and solved by a genetic algorithm to determine the optimised inspection and maintenance strategy for the fatigue affected steel bridge members. The optimised strategy is achieved by minimizing the life-cycle cost, including the inspection, maintenance and failure costs, and maximizing the service life after necessary intervention. The number of intervention during the service life is also taken into account to investigate the relationship between the service life and the cost for maintenance. The results from numerical examples show that the proposed method can provide a useful approach for cost-effective inspection and maintenance strategy for fatigue affected steel bridges.

Discrete Optimum Design of Ship Structures by Genetic Algorithm (유전적 알고리즘에 의한 선체 구조물의 이산적 최적설계)

  • Y.S. Yang;G.H. Kim;W.S. Ruy
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.147-156
    • /
    • 1994
  • Though optimization method had been used for long time for the optimal design of ship structure, design variables in the most cases were assumed to be continuous real values or it was not easy to solve the mixed integer optimum design problems using the conventional optimization methods. Thus, it was often tried to use various initial starting points to locate the best optimum paint and to use special method such as branch and bound method to handle the discrete design variables in the optimization problems. Sometimes it had succeed, but the essential problems for dealing with the local optimum and discrete design variables was left unsolved. Hence, in this paper, Genetic Algorithms adopting the biological evolution process is applied to the ship structural design problem where the integer values for the number of stiffen design variables or the discrete values for the plate thickness variables would be more preferable in order to find out their effects on the final optimum design. Through the numerical result comparisons, it was found that Genetic Algorithm could always yield the global optimum for the discrete and mixed integer structural optimization problem cases even though it takes more time than other methods.

  • PDF

A Survey of Genetic Programming and Its Applications

  • Ahvanooey, Milad Taleby;Li, Qianmu;Wu, Ming;Wang, Shuo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1765-1794
    • /
    • 2019
  • Genetic Programming (GP) is an intelligence technique whereby computer programs are encoded as a set of genes which are evolved utilizing a Genetic Algorithm (GA). In other words, the GP employs novel optimization techniques to modify computer programs; imitating the way humans develop programs by progressively re-writing them for solving problems automatically. Trial programs are frequently altered in the search for obtaining superior solutions due to the base is GA. These are evolutionary search techniques inspired by biological evolution such as mutation, reproduction, natural selection, recombination, and survival of the fittest. The power of GAs is being represented by an advancing range of applications; vector processing, quantum computing, VLSI circuit layout, and so on. But one of the most significant uses of GAs is the automatic generation of programs. Technically, the GP solves problems automatically without having to tell the computer specifically how to process it. To meet this requirement, the GP utilizes GAs to a "population" of trial programs, traditionally encoded in memory as tree-structures. Trial programs are estimated using a "fitness function" and the suited solutions picked for re-evaluation and modification such that this sequence is replicated until a "correct" program is generated. GP has represented its power by modifying a simple program for categorizing news stories, executing optical character recognition, medical signal filters, and for target identification, etc. This paper reviews existing literature regarding the GPs and their applications in different scientific fields and aims to provide an easy understanding of various types of GPs for beginners.

CNN-based Adaptive K for Improving Positioning Accuracy in W-kNN-based LTE Fingerprint Positioning

  • Kwon, Jae Uk;Chae, Myeong Seok;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.217-227
    • /
    • 2022
  • In order to provide a location-based services regardless of indoor or outdoor space, it is important to provide position information of the terminal regardless of location. Among the wireless/mobile communication resources used for this purpose, Long Term Evolution (LTE) signal is a representative infrastructure that can overcome spatial limitations, but the positioning method based on the location of the base station has a disadvantage in that the accuracy is low. Therefore, a fingerprinting technique, which is a pattern recognition technology, has been widely used. The simplest yet widely applied algorithm among Fingerprint positioning technologies is k-Nearest Neighbors (kNN). However, in the kNN algorithm, it is difficult to find the optimal K value with the lowest positioning error for each location to be estimated, so it is generally fixed to an appropriate K value and used. Since the optimal K value cannot be applied to each estimated location, therefore, there is a problem in that the accuracy of the overall estimated location information is lowered. Considering this problem, this paper proposes a technique for adaptively varying the K value by using a Convolutional Neural Network (CNN) model among Artificial Neural Network (ANN) techniques. First, by using the signal information of the measured values obtained in the service area, an image is created according to the Physical Cell Identity (PCI) and Band combination, and an answer label for supervised learning is created. Then, the structure of the CNN is modeled to classify K values through the image information of the measurements. The performance of the proposed technique is verified based on actual data measured in the testbed. As a result, it can be seen that the proposed technique improves the positioning performance compared to using a fixed K value.

Computational intelligence models for predicting the frictional resistance of driven pile foundations in cold regions

  • Shiguan Chen;Huimei Zhang;Kseniya I. Zykova;Hamed Gholizadeh Touchaei;Chao Yuan;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.217-232
    • /
    • 2023
  • Numerous studies have been performed on the behavior of pile foundations in cold regions. This study first attempted to employ artificial neural networks (ANN) to predict pile-bearing capacity focusing on pile data recorded primarily on cold regions. As the ANN technique has disadvantages such as finding global minima or slower convergence rates, this study in the second phase deals with the development of an ANN-based predictive model improved with an Elephant herding optimizer (EHO), Dragonfly Algorithm (DA), Genetic Algorithm (GA), and Evolution Strategy (ES) methods for predicting the piles' bearing capacity. The network inputs included the pile geometrical features, pile area (m2), pile length (m), internal friction angle along the pile body and pile tip (Ø°), and effective vertical stress. The MLP model pile's output was the ultimate bearing capacity. A sensitivity analysis was performed to determine the optimum parameters to select the best predictive model. A trial-and-error technique was also used to find the optimum network architecture and the number of hidden nodes. According to the results, there is a good consistency between the pile-bearing DA-MLP-predicted capacities and the measured bearing capacities. Based on the R2 and determination coefficient as 0.90364 and 0.8643 for testing and training datasets, respectively, it is suggested that the DA-MLP model can be effectively implemented with higher reliability, efficiency, and practicability to predict the bearing capacity of piles.

GIS Vector Map Compression using Spatial Energy Compaction based on Bin Classification (빈 분류기반 공간에너지집중기법을 이용한 GIS 벡터맵 압축)

  • Jang, Bong-Joo;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.3
    • /
    • pp.15-26
    • /
    • 2012
  • Recently, due to applicability increase of vector data based digital map for geographic information and evolution of geographic measurement techniques, large volumed GIS(geographic information service) services having high resolution and large volumed data are flowing actively. This paper proposed an efficient vector map compression technique using the SEC(spatial energy compaction) based on classified bins for the vector map having 1cm detail and hugh range. We encoded polygon and polyline that are the main objects to express geographic information in the vector map. First, we classified 3 types of bins and allocated the number of bits for each bin using adjacencies among the objects. and then about each classified bin, energy compaction and or pre-defined VLC(variable length coding) were performed according to characteristics of classified bins. Finally, for same target map, while a vector simplification algorithm had about 13%, compression ratio in 1m resolution we confirmed our method having more than 80% encoding efficiencies about original vector map in the 1cm resolution. Also it has not only higher compression ratio but also faster computing speed than present SEC based compression algorithm through experimental results. Moreover, our algorithm presented much more high performances about accuracy and computing power than vector approximation algorithm on same data volume sizes.

Genetic Programming based Manufacutring Big Data Analytics (유전 프로그래밍을 활용한 제조 빅데이터 분석 방법 연구)

  • Oh, Sanghoun;Ahn, Chang Wook
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.31-40
    • /
    • 2020
  • Currently, black-box-based machine learning algorithms are used to analyze big data in manufacturing. This algorithm has the advantage of having high analytical consistency, but has the disadvantage that it is difficult to interpret the analysis results. However, in the manufacturing industry, it is important to verify the basis of the results and the validity of deriving the analysis algorithms through analysis based on the manufacturing process principle. To overcome the limitation of explanatory power as a result of this machine learning algorithm, we propose a manufacturing big data analysis method using genetic programming. This algorithm is one of well-known evolutionary algorithms, which repeats evolutionary operators such as selection, crossover, mutation that mimic biological evolution to find the optimal solution. Then, the solution is expressed as a relationship between variables using mathematical symbols, and the solution with the highest explanatory power is finally selected. Through this, input and output variable relations are derived to formulate the results, so it is possible to interpret the intuitive manufacturing mechanism, and it is also possible to derive manufacturing principles that cannot be interpreted based on the relationship between variables represented by formulas. The proposed technique showed equal or superior performance as a result of comparing and analyzing performance with a typical machine learning algorithm. In the future, the possibility of using various manufacturing fields was verified through the technique.

Structural Optimization of Planar Truss using Quantum-inspired Evolution Algorithm (양자기반 진화알고리즘을 이용한 평면 트러스의 구조최적화)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • With the development of quantum computer, the development of the quantum-inspired search method applying the features of quantum mechanics and its application to engineering problems have emerged as one of the most interesting research topics. This algorithm stores information by using quantum-bit superposed basically by zero and one and approaches optional values through the quantum-gate operation. In this process, it can easily keep the balance between the two features of exploration and exploitation, and continually accumulates evolutionary information. This makes it differentiated from the existing search methods and estimated as a new algorithm as well. Thus, this study is to suggest a new minimum weight design technique by applying quantum-inspired search method into structural optimization of planar truss. In its mathematical model for optimum design, cost function is minimum weight and constraint function consists of the displacement and stress. To trace the accumulative process and gathering process of evolutionary information, the examples of 10-bar planar truss and 17-bar planar truss are chosen as the numerical examples, and their results are analyzed. The result of the structural optimized design in the numerical examples shows it has better result in minimum weight design, compared to those of the other existing search methods. It is also observed that more accurate optional values can be acquired as the result by accumulating evolutionary information. Besides, terminal condition is easily caught by representing Quantum-bit in probability.

Design of Optimized RBFNNs based on Night Vision Face Recognition Simulator Using the 2D2 PCA Algorithm ((2D)2 PCA알고리즘을 이용한 최적 RBFNNs 기반 나이트비전 얼굴인식 시뮬레이터 설계)

  • Jang, Byoung-Hee;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In this study, we propose optimized RBFNNs based on night vision face recognition simulator with the aid of $(2D)^2$ PCA algorithm. It is difficult to obtain the night image for performing face recognition due to low brightness in case of image acquired through CCD camera at night. For this reason, a night vision camera is used to get images at night. Ada-Boost algorithm is also used for the detection of face images on both face and non-face image area. And the minimization of distortion phenomenon of the images is carried out by using the histogram equalization. These high-dimensional images are reduced to low-dimensional images by using $(2D)^2$ PCA algorithm. Face recognition is performed through polynomial-based RBFNNs classifier, and the essential design parameters of the classifiers are optimized by means of Differential Evolution(DE). The performance evaluation of the optimized RBFNNs based on $(2D)^2$ PCA is carried out with the aid of night vision face recognition system and IC&CI Lab data.