• Title/Summary/Keyword: Event detection

Search Result 650, Processing Time 0.031 seconds

Intelligent Abnormal Situation Event Detections for Smart Home Users Using Lidar, Vision, and Audio Sensors (스마트 홈 사용자를 위한 라이다, 영상, 오디오 센서를 이용한 인공지능 이상징후 탐지 알고리즘)

  • Kim, Da-hyeon;Ahn, Jun-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.17-26
    • /
    • 2021
  • Recently, COVID-19 has spread and time to stay at home has been increasing in accordance with quarantine guidelines of the government such as recommendations to refrain from going out. As a result, the number of single-person households staying at home is also increasingsingle-person households are less likely to be notified to the outside world in times of emergency than multi-person households. This study collects various situations occurring in the home with lidar, image, and voice sensors and analyzes the data according to the sensors through their respective algorithms. Using this method, we analyzed abnormal patterns such as emergency situations and conducted research to detect abnormal signs in humans. Artificial intelligence algorithms that detect abnormalities in people by each sensor were studied and the accuracy of anomaly detection was measured according to the sensor. Furthermore, this work proposes a fusion method that complements the pros and cons between sensors by experimenting with the detectability of sensors for various situations.

Facial fractures and associated injuries in high- versus low-energy trauma: all are not created equal

  • Hilaire, Cameron St.;Johnson, Arianne;Loseth, Caitlin;Alipour, Hamid;Faunce, Nick;Kaminski, Stephen;Sharma, Rohit
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.42
    • /
    • pp.22.1-22.6
    • /
    • 2020
  • Introduction: Facial fractures (FFs) occur after high- and low-energy trauma; differences in associated injuries and outcomes have not been well articulated. Objective: To compare the epidemiology, management, and outcomes of patients suffering FFs from high-energy and low-energy mechanisms. Methods: We conducted a 6-year retrospective local trauma registry analysis of adults aged 18-55 years old that suffered a FF treated at the Santa Barbara Cottage Hospital. Fracture patterns, concomitant injuries, procedures, and outcomes were compared between patients that suffered a high-energy mechanism (HEM: motor vehicle crash, bicycle crash, auto versus pedestrian, falls from height > 20 feet) and those that suffered a low-energy mechanism (LEM: assault, ground-level falls) of injury. Results: FFs occurred in 123 patients, 25 from an HEM and 98 from an LEM. Rates of Le Fort (HEM 12% vs. LEM 3%, P = 0.10), mandible (HEM 20% vs. LEM 38%, P = 0.11), midface (HEM 84% vs. LEM 67%, P = 0.14), and upper face (HEM 24% vs. LEM 13%, P = 0.217) fractures did not significantly differ between the HEM and LEM groups, nor did facial operative rates (HEM 28% vs. LEM 40%, P = 0.36). FFs after an HEM event were associated with increased Injury Severity Scores (HEM 16.8 vs. LEM 7.5, P <0.001), ICU admittance (HEM 60% vs. LEM 13.3%, P <0.001), intracranial hemorrhage (ICH) (HEM 52% vs. LEM 15%, P <0.001), cervical spine fractures (HEM 12% vs. LEM 0%, P = 0.008), truncal/lower extremity injuries (HEM 60% vs. LEM 6%, P <0.001), neurosurgical procedures for the management of ICH (HEM 54% vs. LEM 36%, P = 0.003), and decreased Glasgow Coma Score on arrival (HEM 11.7 vs. LEM 14.2, P <0.001). Conclusion: FFs after HEM events were associated with severe and multifocal injuries. FFs after LEM events were associated with ICH, concussions, and cervical spine fractures. Mechanism-based screening strategies will allow for the appropriate detection and management of injuries that occur concomitant to FFs. Type of study: Retrospective cohort study. Level of evidence: Level III.

Implementation of Public Address System Using Anchor Technology

  • Seungwon Lee;Soonchul Kwon;Seunghyun Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • A public address (PA) system installed in a building is a system that delivers alerts, announcements, instructions, etc. in an emergency or disaster situation. As for the products used in PA systems, with the development of information and communication technology, PA products with various functions have been introduced to the market. PA systems recently launched in the market may be connected through a single network to enable efficient management and operation, or use voice recognition technology to deliver quick information in case of an emergency. In addition, a system capable of locating a user inside a building using a location-based service and guiding or responding to a safe area in the event of an emergency is being launched on the market. However, the new PA systems currently on the market add some functions to the existing PA system configuration to make system operation more convenient, but they do not change the complex PA system configuration to reduce facility costs, maintenance, and management costs. In this paper, we propose a novel PA system configuration for buildings using audio networks and control hierarchy over peer-to-peer (Anchor) technology based on audio over IP (AoIP), which simplifies the complex PA system configuration and enables convenient operation and management. As a result of the study, through the emergency signal processing algorithm, fire broadcasting was made possible according to the detection of the existence of a fire signal in the Anchor system. In addition, the control device of the PA system was replaced with software to reduce the equipment installation cost, and the PA system configuration was simplified. In the future, it is expected that the PA system using Anchor technology will become the standard for PA facilities.

Accuracy and robustness of hysteresis loop analysis in the identification and monitoring of plastic stiffness for highly nonlinear pinching structures

  • Hamish Tomlinson;Geoffrey W. Rodgers;Chao Xu;Virginie Avot;Cong Zhou;J. Geoffrey Chase
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.101-111
    • /
    • 2023
  • Structural health monitoring (SHM) covers a range of damage detection strategies for buildings. In real-time, SHM provides a basis for rapid decision making to optimise the speed and economic efficiency of post-event response. Previous work introduced an SHM method based on identifying structural nonlinear hysteretic parameters and their evolution from structural force-deformation hysteresis loops in real-time. This research extends and generalises this method to investigate the impact of a wide range of flag-shaped or pinching shape nonlinear hysteretic response and its impact on the SHM accuracy. A particular focus is plastic stiffness (Kp), where accurate identification of this parameter enables accurate identification of net and total plastic deformation and plastic energy dissipated, all of which are directly related to damage and infrequently assessed in SHM. A sensitivity study using a realistic seismic case study with known ground truth values investigates the impact of hysteresis loop shape, as well as added noise, on SHM accuracy using a suite of 20 ground motions from the PEER database. Monte Carlo analysis over 22,000 simulations with different hysteresis loops and added noise resulted in absolute percentage identification error (median, (IQR)) in Kp of 1.88% (0.79, 4.94)%. Errors were larger where five events (Earthquakes #1, 6, 9, 14) have very large errors over 100% for resulted Kp as an almost entirely linear response yielded only negligible plastic response, increasing identification error. The sensitivity analysis shows accuracy is reduces to within 3% when plastic drift is induced. This method shows clear potential to provide accurate, real-time metrics of non-linear stiffness and deformation to assist rapid damage assessment and decision making, utilising algorithms significantly simpler than previous non-linear structural model-based parameter identification SHM methods.

Study on Methodology of Collecting Realtime File Access Event Information (실시간 파일 접근 이벤트 정보 수집 방법에 관한 연구)

  • Han, Sung-Hwa
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.447-448
    • /
    • 2021
  • The boundary-based security architecture has the advantage of easy deployment of security solutions and high operational efficiency. The boundary-based security architecture is easy to detect and block externally occurring security threats, but is inappropriate to block internally occurring security threats. Unfortunately, internal security threats are increasing in frequency. In order to solve this problem, a zero trust model has been proposed. The zero trust model requires a real-time monitoring function to analyze the behavior of a subject accessing various information resources. However, there is a limit to real-time monitoring of file access of a subject confirmed to be trusted in the system. Accordingly, this study proposes a method to monitor user's file access in real time. To verify the effectiveness of the proposed monitoring method, the target function was verified after the demonstration implementation. As a result, it was confirmed that the method proposed in this study can monitor access to files in real time.

  • PDF

A Study on Improving Precision Rate in Security Events Using Cyber Attack Dictionary and TF-IDF (공격키워드 사전 및 TF-IDF를 적용한 침입탐지 정탐률 향상 연구)

  • Jongkwan Kim;Myongsoo Kim
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.9-19
    • /
    • 2022
  • As the expansion of digital transformation, we are more exposed to the threat of cyber attacks, and many institution or company is operating a signature-based intrusion prevention system at the forefront of the network to prevent the inflow of attacks. However, in order to provide appropriate services to the related ICT system, strict blocking rules cannot be applied, causing many false events and lowering operational efficiency. Therefore, many research projects using artificial intelligence are being performed to improve attack detection accuracy. Most researches were performed using a specific research data set which cannot be seen in real network, so it was impossible to use in the actual system. In this paper, we propose a technique for classifying major attack keywords in the security event log collected from the actual system, assigning a weight to each key keyword, and then performing a similarity check using TF-IDF to determine whether an actual attack has occurred.

A Study on fault diagnosis of DC transmission line using FPGA (FPGA를 활용한 DC계통 고장진단에 관한 연구)

  • Tae-Hun Kim;Jun-Soo Che;Seung-Yun Lee;Byeong-Hyeon An;Jae-Deok Park;Tae-Sik Park
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.601-609
    • /
    • 2023
  • In this paper, we propose an artificial intelligence-based high-speed fault diagnosis method using an FPGA in the event of a ground fault in a DC system. When applying artificial intelligence algorithms to fault diagnosis, a substantial amount of computation and real-time data processing are required. By employing an FPGA with AI-based high-speed fault diagnosis, the DC breaker can operate more rapidly, thereby reducing the breaking capacity of the DC breaker. therefore, in this paper, an intelligent high-speed diagnosis algorithm was implemented by collecting fault data through fault simulation of a DC system using Matlab/Simulink. Subsequently, the proposed intelligent high-speed fault diagnosis algorithm was applied to the FPGA, and performance verification was conducted.

Development of Methane Gas Leak Detector by Short Infrared Laser (단적외선 레이저를 이용한 메탄가스 누출 검지 장비 개발)

  • Young Sam Baek;Jung Wan Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.1
    • /
    • pp.53-58
    • /
    • 2024
  • Due to the development of industry and improvement of living standards, the amount of natural gas used in the world is constantly increasing, and related industrial facilities such as power plants, storage facilities, and supply pipelines are constantly increasing. Natural gas is a convenient and clean fuel that does not pollute the environment, but in the event of an accident due to leakage, it can cause human casualties, large-scale property damage, and negative effects on the global warming effect. In addition to the severe penalties under the Severe Disaster Punishment Act, it is necessary to ensure safety. Therefore, by applying the principle of laser-based absorption spectroscopy, we developed a long-range portable methane leakage gas detection system that can detect the concentration of methane leaking from a distance of up to 30 meters and verified its effectiveness.

3D HMI of Hydrogen Refueling Station Using Digital Twin (디지털트윈을 이용한 수소충전소의 3D HMI)

  • Hyeon-Jun Bae;Seoung-Uk Lee;Sung-Ho Hwang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.797-802
    • /
    • 2024
  • Hydrogen refueling station safety is the most vulnerable when installing, commissioning, and repairing hydrogen refueling station equipment. At this time, developing and providing a digital twin of a hydrogen refueling station can help install equipment, start-up, and repair failures. Digital twins are also required for event detection, cause analysis, and prediction during hydrogen refueling station operation. However, since the current SCADA HMI of hydrogen refueling stations consists of 2D, it is difficult for those who do not know the basic knowledge and composition status of hydrogen refueling stations to understand intuitively. In this paper, by introducing digital twin technology to hydrogen refueling stations and displaying the values measured at hydrogen refueling station equipment in real time in 3D, it is intended to help intuitively analyze and predict the occurrence, cause, and prediction of events at hydrogen refueling stations. For this purpose, data from SCADA HMI were extracted, transmitted to the digital twin, and provided an intuitive and easy-to-understand 3D environment in the digital twin so that non-professionals can easily grasp the operation status of the hydrogen refueling station.

Real-time Fall Accident Prediction using Random Forest in IoT Environment (사물인터넷 환경에서 랜덤포레스트를 이용한 실시간 낙상 사고 예측)

  • Chan-Woo Bang;Bong-Hyun Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.4
    • /
    • pp.27-33
    • /
    • 2024
  • As of 2023, the number of accident victims in the domestic construction industry is 26,829, ranking second only to other businesses (service industries). The accident types of casualties in all industries were falls (29,229 people), followed by falls (14,357 people). Based on the above data, this study attaches sensors to hard hats and insoles to predict fall accidents that frequently occur at construction sites, and proposes smart safety equipment that applies a random forest algorithm based on the data collected through this. The random forest model can determine fall accidents in real time with high accuracy by generating multiple decision trees and combining the predictions of each tree. This model classifies whether a worker has had a fall accident and the type of behavior through data collected from the MPU-6050 sensor attached to the hard hat. Fall accidents that are primarily determined from hard hats are secondarily predicted through sensors attached to the insole, thereby increasing prediction accuracy. It is expected that this will enable rapid response in the event of an accident, thereby reducing worker deaths and accidents.