• Title/Summary/Keyword: Evaporation cooling

Search Result 177, Processing Time 0.028 seconds

Experimental study on the heat transfer characteristics of evaporative transpiration cooling (증발분출냉각의 열전달 특성에 관한 실험적 연구)

  • 이진호;남궁규완;김홍제;주성백
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1130-1137
    • /
    • 1988
  • Heat transfer characteristics of evaporative transpiration cooling was investigated experimentally in the range of coolant mass flux, 0.002kg/m$^{2}$.sec~0.015m$^{2}$.sec. Glass beads, sand and copper particles were used as porous media and distilled water was used as a conant. The existence of evaporation zone was confirmed on this experimental conditions and its length increases with increasing article size and with decreasing mass flux. In order to get the low surface temperature, porous materials with high thermal conductivity is preferred when the panicle sizes are same, and small particles with low porosity is effective in case of the same material. Due to the relatively small coolant mass flux, evaporative transpiration cooling system could be stable by the capillary effect.

Experimental Study of Moisture-Wicking Fabric as Cooling Pad for Novel Rotary Direct Evaporative Cooler

  • Sang-Hwan Park;Jae-Weon Jeong
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.335-341
    • /
    • 2023
  • This study proposes a novel rotary direct evaporative cooler and investigates the potential of a moisture-wicking fabric as a cooling pad for the proposed evaporative cooler. The rotary direct evaporative cooler rotates the cooling pad to reduce the water and energy consumption of the pump compared to those of existing direct evaporative coolers. A moisture-wicking fabric is considered as the material of the cooling pad, because of its high moisture-wicking property, enhancing water evaporation. Experiments are performed under various inlet air conditions while measuring the air temperature, relative humidity, air velocity, and differential pressure. The evaporative cooling efficiency and impacts of the inlet air temperature and air velocity on the cooling performance are also evaluated. The results demonstrate the potential of the moisture-wicking fabric as cooling pad of direct evaporative cooler.

A Study on the Evaporation Characteristics of Water or Nanofluid Droplets on a Heated Surface (물과 나노유체 액적의 고온 벽면에서의 증발 특성에 관한 연구)

  • Kim, J.H.;Lee, K.J.;Jung, S.W.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.177-183
    • /
    • 2016
  • In this study, the evaporation characteristics of water or nanofluid droplets on a heated surface was investigated by visualization of the evaporation process and evaluation of the heat transfer coefficient using the droplet temperature measured. The evaporation characteristics was compared between water and nanofluid droplets and the effects of the mass ratio of nanofluid and the inclination of heated surface were analyzed. The heat transfer rate of nanofluid droplet was higher than that of water droplet. The heat transfer coefficient was increased with the increase of the mass ratio of nanofluid. The effect of the inclination of heated surface was much higher than that of fluid type used, which indicates that the inclination of heated surface should be considered as one of influential parameters in the spray cooling process.

Investigation of Droplet Vaporizatio Phenomena in High Pressure Environments (고압에서의 액적의 증발현상에 관한 연구)

  • Lee, Hyun-Chang;Baek, Seung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.17-23
    • /
    • 2008
  • The spray combustion and spray cooling depends on droplet evaporation. So, evaporation model for spray has been requested and lots of investigation has been done and various reliable models have been developed also for last few decades. In the present study, One dimensional quasi-steady spherically symmetric droplet evaporation model for micro-gravity is developed. The gas phase was assumed as steady state and the thermophysical properties are calculated as a function of temperature, pressure and composition and the properties used in the model was validated by NIST web data and overall evaporation history results was compared with experimental results by Nomura and Qasim and gave satisfactory agreements. Through this model, diverse phenomenon was investigated, especially regarding the effects of ambient pressure and temperature. The effects of pressure for the droplet evaporation time were studied. The high pressure increased the droplet surface temperature and made effect on the evaporation time depend on atmospheric temperature. The role of the ambient temperature was investigated and explained. The basic investigation for the evaporation process according to variation of droplet diameter and surface temperature were also investigated and the well-known phenomena, like D-square-law, were reported, too.

  • PDF

Eco-friendly Self-cooling System of Porous Onggi Ceramic Plate by Evaporation of Absorbed Water

  • Katsuki, Hiroaki;Choi, Eun-Kyong;Lee, Won-Jun;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.153-159
    • /
    • 2018
  • Porous ceramic plates were prepared from Onggi clay and bamboo charcoal powder at 1100 and $1200^{\circ}C$ and their porous properties and water absorption, and the cooling effect of porous plates, were investigated to produce eco-friendly porous ceramics for a self-cooling system that relies on the evaporation of absorbed water. Porous properties were dependent on the particle size of charcoal powder pore forming additive and the firing temperature; properties were also found to be dependent on the total pore volume, average pore size and porosity, which had values of $0.103-0.243cm^3/g$, 0.81 - 2.56 mm and 20.9 - 38.2%, respectively, at $1100^{\circ}C$ and $0.04-0.18cm^3/g$, 0.33 - 2.03 mm and 10.8 - 30.9%, respectively, at $1200^{\circ}C$. Cooling temperature difference of flowing air parallel to surface of porous ceramic plates fired with two kinds of charcoal powder at $1100^{\circ}C$ was $3.5-3.6^{\circ}C$ at $26^{\circ}C$ and 60% of relative humidity in a closed box. Cooling temperature difference was dependent on the number of porous plates and the distance between porous plates. A simple and eco-friendly cooling system using porous ceramic plates fired from Onggi clay and charcoal powder was proposed.

Empirical Analysis on the Cooling Load and Evaporation Efficiency of Fogging System in Greenhouses (온실의 냉방부하 및 포그시스템의 증발효율 실험분석)

  • Nam, Sang-Woon;Seo, Dong-Uk;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.147-152
    • /
    • 2015
  • In order to develop the cooling load estimation method in the greenhouse, the cooling load calculation formula based on the heat balance method was constructed and verified by the actual cooling load measured in the fog cooling greenhouse. To examine the ventilation heat transfer in the cooling load calculation formula, we measured ventilation rates in the experimental greenhouse which a cooling system was not operated. The ventilation heat transfer by a heat balance method showed a relatively good agreement. Evaporation efficiencies of the two-fluid fogging system were a range of 0.3 to 0.94, average 0.67, and it showed that they increased as the ventilation rate increased. We measured thermal environments in a fog cooling greenhouse, and calculated cooling load by heat balance equation. Also we calculated evaporative cooling energy by measuring the sprayed amount in the fogging system. And by comparing those two results, we could verify that the calculated and the measured cooling load showed a relatively similar trend. When the cooling load was low, the measured value was slightly larger than calculated, when the cooling load was high, it has been found to be smaller than calculated. In designing the greenhouse cooling system, the capacity of cooling equipment is determined by the maximum cooling load. We have to consider the safety factor when installed capacity is estimated, so a cooling load calculation method presented in this study could be applied to the greenhouse environmental design.

Evaporation Heat Transfer Characteristics of Hydrocarbon Refrigerants R-290 and R-600a in the Horizontal Tubes

  • Roh, Geon-Sang;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.74-83
    • /
    • 2007
  • This paper presents the experimental results of evaporation heat transfer coefficients of HC refrigerants (e.g. R290 and R600a). R-22 as a HCFCs refrigerant and R-l34a as a HFCs refrigerant in horizontal double pipe heat exchangers, having four different inner diameters of 10.07, 7.73, 6.54 and 5.80 mm respectively. The experiments of the evaporation process were conducted at mass flux of $35.5{\sim}210.4 kg/m^2s$ and cooling capacity of $0.95{\sim}10.1 kW$. The main results were summarized as follows : The average evaporation heat transfer coefficient of hydrocarbon refrigerants(R-290 and R-600a) was higher than the refrigerants, R-22 and R-l34a. In comparison with R-22 the evaporation heat transfer coefficient of R-l34a is approximately $-11{\sim}8.1 %$ higher. R-290 is $56.7{\sim}70.1 %$ higher and R-600a is $46.9{\sim}59.7 %$ higher. respectively. In comparison with experimental data and some correlations, the evaporation heat transfer coefficients are well predicted with the Kandlikar's correlation regardless of a type of refrigerants and tube diameters.

The study of a fire fighting characteristic by a Single Evaporating Droplet in the case of a fire of military enclosure space (군사용 밀폐공간내의 화재시 단일 증발액적에 의한 방재특성 연구)

  • 이진호;방창훈;김정수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.207-217
    • /
    • 2000
  • A fire fighting characteristic by a single evaporating droplet in the case of a fire of military enclosure space was studied experimentally. Transient cooling of solid surface by water droplet evaporation has been investigated through controlled experiments using a heated brass cylinder. Quantitative predictions of droplet evaporation time and in-depth transient temperature distribution in solid have been made. The particular interest was in the removal of thermal energy from the heated cylinder by evaporative cooling. A $10{\mu}1$ single droplet is deposited on a horizontal brass surface with initial temperatures in the range of $90^{\circ}C{\sim}130^{\circ}C.$ The results can be summarized as follows; Evaporating droplet was divided into three different configuration. Evaporation time was predicted as a function of initial surface temperature ($t_c=492.62-6.89T_{s0}+0.0248T_{s0}^2).$ The contact temperature was predicted as a function of initial surface temperature( $T_{i}$=0.94 $T_{s0}$+1.4), The parameter ${\beta}_o$ was predicted as a function of initial surface temperature( ${\beta}_0$ : 0.O0312 $T_{s0}+0.932$)>)>)

  • PDF

Mist Cooling of High-Temperature Cylinder Surface (고온 실린더의 미스트 냉각)

  • Kim, Mu-Hwan;Lee, Su-Gwan;Park, Ji-Man;Lee, Pil-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.448-457
    • /
    • 2002
  • Heat treatment such as quenching of a high-temperature cylinder is being used on steel to produce high strength levels. Especially, the mist cooling with the high and uniform surface heat flux rate s expected to contribute for better products. The experimental mist cooling curve is produced for better understanding, and two distinct heat transfer regions are recognized from the cooling curve produced. It is shown that the liquid film evaporation dominated region follows the film boiling-dominated region as decreasing the temperature of test cylinder by mist flow. Based on the intuitive view from some previous investigations, a simplified model with some assumptions is introduced to explain the mist cooling curve, and it is shown that the estimation agrees well with our experimental data. In the meanwhile, it is known that the wetting temperature, at which surface heat flux rate is a maximum, increases with mass flow rate ratio of water to air ($\varkappa$ < 10). However, based on our experimental data, it is explained that there exists a critical mass flow rate ratio, at which the wetting temperature is maximum, in the range of 3 < $\varkappa$ < 130. Also, it is described that despite of the same value of $\varkappa$, the wetting temperature may increase with mist velocity.

Evaluation of Passive Cooling Effect on Roof Pond through Field Observation (관측에 의한 옥상 수공간의 자연냉각효과 평가)

  • Jeong, Seong-Jin;Choi, Dong-Ho;Lee, Bu-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.85-89
    • /
    • 2008
  • This study carried out field observations of measuring thermal environment, especially evaluating amount of water evaporation at roof Pond by field observations during the summer. Thermal environment measuring was categorized as air temperature, water temperature of roof pond, surface temperature, globe temperature, short and long wave radiation, net radiation, and amount of water evaporation by water level measurement. Results from this study could be used as fundamental for reducing heat Island phenomena.

  • PDF