• 제목/요약/키워드: Evaporating Heat Transfer Coefficient

검색결과 29건 처리시간 0.021초

수평 평활관내에서 비공비혼합냉매의 강제대류 증발열전달 (Forced Convective Evaporating Heat Transfer of Non-azeotropic Refrigerant Mixtures in a Horizontal Smoothed Tube)

  • 박기원;오후규
    • 설비공학논문집
    • /
    • 제7권2호
    • /
    • pp.225-233
    • /
    • 1995
  • Experiments were performed to investigate the heat transfer characteristics of nonazeotropic mixture R-22+R-114 in a heat pump system. The ranges of parameter, such as heat flux, mass flow rate, and quality were $8,141{\sim}32,564W/m^2$, 24~58kg/h, and 0~1, respectively. The overall compositions of the mixtures were 50 and 100 per-cent of R-22 by weight for R-22+R-114 mixture. The results indicated that there were distinct different heat transfer phenomena between the pure substance and the mixture. In case of pure refrigerant the heat transfer rates for cooling were strongly dependent upon quality of the refrigerant. Overall evaporating heat transfer coefficients for the mixture were somewhat lower than pure R-22 values in the forced convective boiling region. For a given flow rate, the heat transfer coefficient at the circumferential tube wall(top, side, and bottom of the test tube) for R-22/R-114(50/50wt%)mixture, however, was higher than for pure R-22 at side and bottom of the tube. Furthermore, a prediction for the evaporating heat transfer coefficient of the mixtures was developed based on the method of Yoshida et.al.'s. The resulting correlation yielded a good agreement with the data for the refrigerant mixtures.

  • PDF

관경별 탄화수소계 냉매의 증발 열전달에 관한 특성평가 (Study on Evaporating Heat Transfer of HCs Refrigerants by Changing of Tube Diameter)

  • 이광배;이호생;문춘군;김재돌;윤정인
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.41-42
    • /
    • 2005
  • The experimental apparatus has been set-up as a conventional vapor compression type heat pump system. The test section is a horizontal double pipe heat exchanger. A tube diameter of 12.70 mm, 9.52 mm, 6.35 mm with 1.78 mm,1.52 mm,1.4 mm wall thickness each is used for this investigation. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to that of R-22. and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficient increased with the increase of the mass velocity and it showed the higher values in hydrocarbon refrigerants than R-22. The highest evaporating heat transfer coefficient of all refrigerants was shown in a tube diameter of 6.35 mm with same mass flux.

  • PDF

R-290, R-600a의 수평 이중관형 열교환기내 증발 특성 (Evaporating Heat Transfer Characteristics of R-290, R-600a Inside Horizontal Double Pipe Heat Exchangers)

  • 홍진우;노건상;권옥배;박기원;오후규
    • 설비공학논문집
    • /
    • 제12권3호
    • /
    • pp.309-314
    • /
    • 2000
  • Experimental results for heat transfer characteristics of natural refrigerants R-290, R-600a and HCFC refrigerant R-22 during evaporating inside horizontal double pipe heat exchangers are presented. The experimental apparatus is basically a vapour heat pump system, composed of a compressor, a condenser, expansion devices, a evaporator, and some other peripheral devices. The test sections were horizontal double pipe heat exchangers, which were a pair of smoothed tube, having 10.07 mm ID, 12.07 mm OD, and grooved inner fin tube, having 12.70 mm OD, 0.25 mm fin height, and 75 fins. The local evaporating heat transfer coefficients of natural refrigerants were not much affected with the mass velocity than R-22 and it could be interpreted that the local evaporating heat transfer coefficients of R-22 were increased more than those of R-290, R-600a according to the increment of mass velocity. Moreover, the maximum increment of the heat transfer coefficient was found in R-290. The average heat transfer coefficient was obtained the maximum value in R-290 and the minimum value in R-22. It reveals that the natural refrigerant can be used as a substitute for R-22. In the grooved inner fin tube, 70% of the increment of the heat transfer coefficient was obtained compared to the smoothed tube.

  • PDF

Characteristics of Hydrocarbon Refrigerants on Evaporating Heat Transfer and Pressure Drop

  • Lee Ho-Saeng;Phan Thanh Tong;Yoon Jung-In
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제14권3호
    • /
    • pp.102-109
    • /
    • 2006
  • Experimental results for heat transfer characteristics and pressure gradients of HCs refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 during evaporating inside horizontal double pipe heat exchangers are presented. The test sections which has one tube diameter of 12.70 mm with 0.89 mm wall thickness, another tube diameter of 9.52 mm with 0.76 mm wall thickness are used for this investigation. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were higher than that of R-22. The average evaporating heat transfer coefficient increased with the increase of the mass flux, with the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than R-22. Those results from the investigation can be used in the design of heat exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

프로필렌 냉매의 증발열전달 특성에 관한 실험적 연구 (Experimental Study on Heat Transfer Characteristics of Evaporation using Propylene Refrigerant)

  • 이호생;김재돌;정석권;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.754-761
    • /
    • 2004
  • In this paper, evaporating heat transfer characteristics in the refrigeration and air-conditioning facilities were studied using the environmentally friendly refrigerants R-1270 (Propylene). R-290 (Propane). R-600a (Iso-butane) and HCFC refrigerant R-22 The test tube was surrounded by an annulus with water flowing counter to the refrigerant. The tube is copper. with an outside diameter of 12.7mm and the wall thickness of 1.315mm. The test results showed that the local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to that of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficient increased with the increase of the mass velocity and it showed the higher values in hydrocarbon refrigerants than R-22 Comparing the heat transfer coefficient of experimental results with that of other correlations. the presented results had agood agreement with the Kandlikar's correlation. This results form the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air-conditioning systems.

12.7mm 내면핀관을 이용한 R-1270의 열전달 특성 (Heat Transfer Characteristics of R-1270 using 12.7mm Inner Fin Tube)

  • 윤정인;성광훈;심규진;진병주;백승문;문춘근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.534-541
    • /
    • 2008
  • This paper deals with the heat transfer characteristics of R-290 (Propane), R-600a (Iso-butane) and R-1270 (Propylene) as an environment friendly refrigerant and R-22 as a HCFC's refrigerant for evaporating. The experimental apparatus has been set-up as conventional vapor compression type refrigeration and air-conditioning system. The test section is a horizontal double pipe heat exchanger. Evaporating heat transfer measurements were performed for smooth tube with the outer diameters of 12.70, 9.52 and 6.35 mm and micro-fin tube 12.70 mm, respectively. For the smooth and micro-fin tubes measured in this study, the evaporating heat transfer coefficient was enhanced according to the increase of the mass flux and decrease of the tube diameter. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to those of R-22 and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficients in hydrocarbon refrigerants showed 20 to 28% higher values than those of R-22. Also, the evaporating heat transfer coefficients of R-22 in the tube diameter of the 12.70 mm smooth and micro-fin tube were compared. Generally, the local heat transfer coefficients for both types of tubes increased with an increase of the mass flux. The heat transfer enhancement factor (EF) between smooth and micro-fin tube varied from 1.9 to 2.7 in all experimental conditions.

An Experimental Study on Convective Boiling of R-22 and R-410A in Horizontal Smooth and Micro-fin Tubes

  • Kim, Yongchan;Seo, Kook-Jeong;Lee, Kyu-Jung;Park, Youn cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제15권8호
    • /
    • pp.1156-1164
    • /
    • 2001
  • Evaporation heat transfer coefficients and pressure drops were measured for smooth and micro-fin tubes with R-22 and R-410A. Heat transfer measurements were performed for 3.0m long horizontal tubes with nominal outside diameters of 9.52 and 7.0mm over an evaporating temperature range of -15 to 5$\^{C}$, a mass flux range of 68 to 211kg/㎡s, and a heat flux range of 5 to 15kW/㎡. It was observed that the heat transfer coefficient increased with mass flux. Evaporation heat transfer coefficients of R-22 and R-410A increased as the evaporating temperature dropped at a lower heat flux. Generally, R-420A showed the higher heat transfer coefficients than R-22 in the range of low mass flux, high heat flux and high evaporating temperature. Pressure drop increased with a decrease of evaporating temperature and a rise of mass flux. Pressure drop of R-22 was higher than that of R-410A at the same mass flux.

  • PDF

탄화수소계 냉매의 증발 열전달 및 압력강하 특성 (Characteristics on Evaporating Heat Transfer and Pressure Drop of HCs Refrigerants)

  • 이광배;이호생;김재돌;윤정인
    • 설비공학논문집
    • /
    • 제17권7호
    • /
    • pp.681-687
    • /
    • 2005
  • Experimental results for heat transfer characteristic and pressure gradients of HCs refrigerants R-290, R-600a, R-1270 and HCFC refrigerant R-22 during evaporating inside horizontal double pipe heat exchangers are presented. The test sections which has one tube diameter of 12.70 m with 0.86 mm wall thickness, another tube diameter of 9.52 mm with 0.76 mm wall thickness are used for this investigation. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were higher than that of R-22. The average evaporating heat transfer coefficient increased with the increase of the mass flux. It showed the higher values in hydrocarbon refrigerants than R-22. Hydrocarbon refrigerants have higher pressure drop than R-22 in 12.7 mm and 9.52 mm. This results form the investigation can be used in the design of heat transfer exchangers using hydrocarbons as the refrigerant for the air- conditioning systems.

세관 내 R-22 의 증발 전열 특성에 관한 연구 (Evaporating heat transfer characteristics of R-22 in small diameter tubes)

  • 최영석
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.134-139
    • /
    • 2000
  • Evaporating heat transfer characteristics of R-22 were measured inside smooth horizontal copper tubes with inner diameters of 3.36 mm and 5.35 mm respectively. The experiments were conducted in the closed loop which was driven by a magnetic gear pump. Experiments were performed for the following range of variables ; mass velocity of refrigerants (200 to 400 $kg/m^2$ .s) saturation temperature ($0^{\circ}C, \; 5^{\circC$}) and quality (0 to 1.0) The main results obtained are as follows : Evaporating heat transfer coefficients in the small diameter tubes (ID<7 mm) were observed to be strongly affected by a variety of diameters and to differ from those in the large diameter tubes. The heat transfer coefficients of the small diameter tubes are higher than those of the large diameter tubes. Comparing the heat transfer coefficients between experimental results and some well-known previous predictions (Shah's correlation Gungor-Winterton's and Kandlikar's correlation) it was very difficult to apply those to small diameter tubes.

  • PDF

내면 핀관을 사용하는 열교환기에서 R-22 대체 탄화수소계 냉매의 증발 열전달 특성 (Evaporating heat transfer characteristics of R-22 alternative hydrocarbon refrigerants at heat exchanger using grooved inner tube)

  • 홍진우;박승준;노건상;구학근;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권4호
    • /
    • pp.414-420
    • /
    • 2000
  • In this paper, evaporation heat transfer characteristics at a inner grooved tube were studied using a new natural refrigerants R-290, R-600a and HCFC refrigerant R-22. Experiments were performed in the inner tube with outside diameter of 12.70mm, having 75 fins with a fin height of 0.25mm. The following results were obtained from this research. On the evaporating heat transfer characteristics, the maximum increment of heat transfer coefficient was found in R-290. Average heat transfer coefficient was obtained the maximum value in R-290 and the minimum value in R-22. It reveals that the natural refrigerant can be used as a substitute for R-22. In the grooved inner tube, 70% of the increment of the heat transfer coefficient was obtained compared to the smooth tube. Comparing the heat transfer coefficient between experimental results and simulation data of other's, the Kandlikar's correlated equation was closely approximated to the author's experimental results in the smooth tube or grooved inner one.

  • PDF